
U N I V E R S I T Y O F C O P E N H A G E N
F A C U L T Y O F S C I E N C E

PhD Thesis

Realistic Hashing, Online Sorting, and
Constrained Correlation Clustering
Jonas Klausen

This PhD project has been supervised by Mikkel Thorup, Ioana Bercea, and Jacob Holm

Submitted March 31, 2025

This thesis has been submitted to the PhD School of The Faculty of Science, University of Copenhagen

Abstract

This thesis summarizes the work I’ve done during my PhD program at BARC, covering new
results in Realistic Hashing, Online Sorting, and Constrained Correlation Clustering

Realistic Hashing revolves around the study of realistically implementable families of func-
tions which carry strong mathematical guarantees. Here we build upon the work of Dahlgaard,
Knudsen, Rotenberg, and Thorup [DKRT15], introducing a new tabulation-based hash function,
Tornado Tabulation, giving both new and stronger guarantees than Mixed Tabulation.

Online Sorting is a new problem introduced by Aamand, Abrahamsen, Beretta, and Kleist
[AABK23]. Real values arrive one by one, and we must place them into an (approximately)
sorted list without moving previous elements. We strengthen their lower bound to also cover
randomized algorithms in the oblivious setting, and show (positive and negative) results for a
range of new variations of the problem.

Finally, Constrained Correlation Clustering, introduced by van Zuylen, Hegde, Jain, and
Williamson [vZHJW07], is a generalization of the well-known Correlation Clustering problem
where certain preferences are promoted to hard constraints, thus restricting the set of valid
solutions. We present a new algorithm that is significantly faster than the one from [vZHJW07],
at the cost of providing a slightly worse (but still constant) approximation factor.

Resumé

Denne afhandling opsummerer arbejdet jeg har udført som del af min PhD-uddannelse ved BARC
og inderholder resultater inden for realistiske hashfunktioner, Online Sorting og Constrained
Correlation Clustering.

Studiet af realistiske hashfunktioner søger at studere praktisk implementerbare familier af
funktioner som besidder stærke matematiske garantier. Vi bygger oven p̊a Dahlgaard, Knudsen,
Rotenberg og Thorup’s arbejde [DKRT15] og introducerer en ny tabulation-baseret hashfunktion,
Tornado Tabulation, som b̊ade besidder nye og stærkere egenskaber end Mixed Tabulation.

Online Sorting er et nyt problem introduceret af Aamand, Abrahamsen, Beretta og Kleist
[AABK23]. Reelle tal ankommer ét af gangen, og skal placeres i (omtrentligt) sorteret rækkefølge
i en liste uden at flytte p̊a tidligere indsatte elementer. Vi forbedrer deres nedre grænse ved at
udvide den til ogs̊a at dække randomiserede algoritmer og viser (positive s̊avel som negative)
resultater i en række nye variationer af dette problem.

Constrained Correlation Clustering, introduceret af van Zuylen, Hegde, Jain og Williamson
[vZHJW07] er en generalisering af det velkendte Correlation Clustering problem hvor visse præ-
ferencer gøres til h̊arde krav som en løsning m̊a opfylde. Vi præsenterer en ny algoritme der er
væsentligt hurtigere end den fra [vZHJW07], til gengæld garanterer vores algoritme en svagere
(men stadigvæk konstant) approksimationsfaktor.

Acknowledgements

Thank you to everyone who helped make this thesis a reality. It goes without saying that the
papers attached in the appendix wouldn’t have come into being without my co-authors, but they
only make up the tip of the iceberg when it comes to the people who have helped me through
my years as a PhD student.

First off, thank you to Mikkel, my advisor. You believed in me, sometimes more than I did
myself. We’ve had more fun times than I can count; working, traveling, and partying together.
It’s been a pleasure working with you – rarely easy, but always fun. Thank you for bringing me
aboard, I love being a part of BARC.

To my co-advisors, Ioana and Jacob, for laughs, drinks, and discussions through the years.
An extra round of thanks to Ioana for always being supportive, helping me navigate and survive
the chaos of BARC, Mikkel, and life in general. Thank you for telling me when to relax, but also
when to get to work. We’ve been on some great adventures together, and I’m very happy to call
you my friend.

To my family, for supporting me all the way, and for always being interested in my work –
even if I never quite managed to explain what it is that I do. To the friends I made at DIKU;
especially Asbjørn, Gabriel, and Rasmus, the best (and most ambitious) study group one could
ask for. I fully believe that our endless discussions (of the curriculum, at times, but mostly of
what lies beyond) played a key part in preparing me for a life of research.

Thanks to awesome friends at BARC: Viktor, for many great discussions and good times, both
in and out of the office. I think back on our course on probability theory with fondness, where,
although equally unqualified, we managed to keep each other afloat. What a ride! Evangelos,
you made me feel welcome before I even considered applying for the PhD. Keep it real! And Joel,
for always being good company, even if we are terrible at getting together. It saddens me that
none of you are in Copenhagen as I’m writing this, but such is the life of short-term employment.

Thanks to Alessandro and Luciano, for hosting me at Tor Vergata, and for an awesome time
in both Egham, London, and Rome.

Thank you Karol and Evangelos (again) for telling me to come visit MPI, for showing me
around, and for convincing me to apply for a job. It couldn’t have worked out better, and I’m
super excited about joining you in Saarbrücken after summer.

Thank you Anne, for being amazing. For always listening and giving advice, no matter what
trouble I’ve found myself in, and for teaching me a thing or two about friendships. Whether
across the hallway or across the world, you’ve always been there for me.

Thank you Helen, for picking me up, calming me down, and for getting excited with me.
You taught me that kindness sometimes takes the form of a firm “No”, which I sorely needed to
learn.

And, finally, thank you Monika. You may be the most recent addition to this list, but you
have turned my life upside down and I don’t want it back the way it was. Having you by my side
makes me remember that there’s more to life than doing research, and each new day with you is
more exciting than the one that came before it. This thesis signals the end of a chapter in my
life, and I’m beyond thrilled at the thought of the future chapters we will be writing together.

Contents

1 Introduction 3

2 Realistic Hashing 5
2.1 Why Realistic Hashing, and How? . 5

2.1.1 k-independence . 6
2.1.2 Uniform Hashing . 6
2.1.3 Locally Uniform Hashing . 7
2.1.4 Feasibility of Implementation . 8

2.2 Tabulation-Based Hash Functions . 8
2.3 Locally Uniform Hashing with Tornado Tabulation 10

2.3.1 Techniques for Showing Uniformity . 10
2.3.2 Application to Linear Probing . 11

2.4 Sampling-Based Estimation . 11
2.4.1 Showing Lower Tails for Tornado Tabulation 12

2.5 What’s Next? . 13

3 Online Sorting 15
3.1 The Problems . 15
3.2 Previous Work . 16
3.3 Contributions . 16

3.3.1 Randomized Algorithms . 16
3.3.2 Stochastic Input . 17

3.4 Open Questions . 18

4 Constrained Correlation Clustering 19
4.1 The Problems . 19
4.2 A Faster Approximation Algorithm . 20

4.2.1 Pivoting Algorithms . 21
4.2.2 Correctness of Pivoting . 21
4.2.3 A Lower Bound for Pivoting . 21

4.3 Node-Weighted Correlation Clustering . 22
4.4 Open Questions . 23

Bibliography 24

A Locally Uniform Hashing 27

B Hashing for Sampling-Based Estimation 76

1

C Online Sorting and Online TSP 136

D A Faster Algorithm for Constrained Correlation Clustering 160

2

Chapter 1

Introduction

This thesis deals with three separate topics in algorithms research, on the basis of four papers
written during my PhD project at BARC:

1. Locally Uniform Hashing, presented at FOCS ’23,
with Ioana Bercea, Lorenzo Beretta, Jakob Houen, and Mikkel Thorup.

Available at https://doi.org/10.1109/FOCS57990.2023.00089 [BBK+23].

2. Hashing for Sampling-Based Estimation, in submission,
with Anders Aamand, Ioana Bercea, Jakob Houen, and Mikkel Thorup.

Available at https://doi.org/10.48550/arXiv.2411.19394 [ABH+24].

3. Online Sorting and Online TSP, presented at ESA ’24,
with Mikkel Abrahamsen, Ioana Bercea, Lorenzo Beretta, and László Kozma.

Available at https://doi.org/10.4230/LIPIcs.ESA.2024.5 [ABB+24].

4. A Faster Algorithm for Constrained Correlation Clustering, presented at STACS ’25,
with Nick Fischer, Evangelos Kipouridis, and Mikkel Thorup.

Available at https://doi.org/10.4230/LIPIcs.STACS.2025.32 [FKKT25].

In accordance with the rules of the PhD program at the Faculty of Science at the University of
Copenhagen, this thesis is split into two parts: First, chapters 2 to 4 introduce the four papers
above, giving an overview of their contributions and techniques. Second, the papers themselves
are attached in their full versions as appendices A to D.

The two papers on hashing make up the majority of the thesis and represent the main topic
of my PhD project. The remaining two papers are self-contained with no relation to the others,
although a common thread across them all is the topic of randomization.

In Locally Uniform Hashing we tackle the fundamental question of constructing practical hash
functions with provable mathematical guarantees, in this case that of Local Uniformity. Local
Uniformity is an extension of Uniform Hashing, which is an alternative to k-independent hash
functions. Rather than guarantee that each set of k keys will be hashed independently, uniform
hashing gives independence for significantly larger sets. In exchange for this strong property,
certain error events are introduced – these events are highly unlikely, but no guarantees are
made when they do occur. Local Uniformity further certifies that keys assigned hash values in
the same interval [a, b] are hashed independently. That is, even when conditioning on keys having
hash values close to each other, we still find that their hash values are independently distributed.

3

https://doi.org/10.1109/FOCS57990.2023.00089
https://doi.org/10.48550/arXiv.2411.19394
https://doi.org/10.4230/LIPIcs.ESA.2024.5
https://doi.org/10.4230/LIPIcs.STACS.2025.32

Building upon the work of Dahlgaard, Knudsen, Rotenberg, and Thorup [DKRT15], we introduce
Tornado Tabulation Hashing, show that it is locally uniform and detail how this property can
be used for implementing Linear Probing. When implemented this way, Linear Probing yields
performance guarantees matching those obtained with fully random hashing (up to lower order
terms).

In the second paper, we further show that Tornado Tabulation exhibits Chernoff-style con-
centration bounds and derive tail inequalities with explicit probability bounds. For any concrete
set of parameters we can thus compute bounds on the probability that the number of elements
hashing to a specific value (or set of values) deviates significantly from its expectation. This
makes Tornado Tabulation suitable for the computation of sampling-based estimators. Here,
statistics on a large data stream are estimated by computing statistics on a sampled subset of
the stream. The quality of the final estimate crucially depends on the concentration given by
the applied hash function. With better concentration we thus need fewer independent trials to
reach any fixed quality guarantee.

The work on hashing is discussed in chapter 2, following this introduction.
Online Sorting is an online problem recently introduced by Aamand, Abrahamsen, Beretta,

and Kleist [AABK23] where n reals arrive one-by-one and must immediately and irrevocably
be placed into an array T of length n. The goal is to minimize the total sum of neighboring
differences,

∑
i|T [i]− T [i+ 1]|. Offline, this objective is easily minimized by placing elements in

sorted order, but in an online setting it was shown by [AABK23] that no deterministic algorithm
could achieve competitive ratio o(

√
n). We extended this lower bound to cover randomized

algorithms, and made contributions to a number of variations on this problem. Notably, we
saw that significantly better bounds can be given (with high probability) when the input stream
consists of independently and uniformly drawn values in the interval [0, 1]. This work in presented
in chapter 3.

Finally, in chapter 4, we discuss Correlation Clustering, a clustering problem on graphs. Each
edge of the graph describes that its endpoints prefer to be clustered together, while the absence
of an edge describes how a pair of elements prefers to be in different clusters. The objective
is to partition the vertices into clusters violating as few preferences as possible. We consider
a slight variation, Constrained Correlation Clustering, where some preferences are instead hard
constraints that must be obeyed. That is, we wish to minimize the number of violated preferences,
but don’t allow any of the hard constraints to be broken. The only known approximation to
Constrained Correlation Clustering, given by van Zuylen and Williamson [vZW09], is based on
solving large linear programs, naturally leading to a high running time. Specifically, theirs is
a 3-approximation running in time O(n3ω), where ω ≥ 2 is the matrix multiplication constant.
In our work, we present an algorithm running in Õ(n3) time, giving a 16-approximation. The
new algorithm is thus significantly faster at the cost of a worse, yet still constant, approximation
factor.

4

Chapter 2

Realistic Hashing

In this chapter I discuss the main topic of my PhD project, the study of realistic hash functions.
Specifically, the analysis of Tornado Tabulation Hashing, which we introduced in [BBK+23]
(appendix A), a new family of functions based on Zobrist’s Tabulation Hashing [Zob70].

In the first section below I give a high-level motivation for this direction of study as well as
an overview of prior approaches to realistic hashing. In section 2.2 I define our new family of
functions, together with a general introduction to tabulation-based hashing and central related
concepts. Section 2.3 presents the results and (some) techniques of [BBK+23] (appendix A). In it
I introduce and motivate our extension to local uniformity, and sketch how we show uniformity
for Tornado Tabulation. Section 2.4 likewise covers [ABH+24] (appendix B) where we show
concentration bounds for Tornado Tabulation.

Finally, section 2.5 contains a discussion on some loose ends left by the two papers, presenting
possible next steps in developing the theory around Tornado Tabulation.

2.1 Why Realistic Hashing, and How?

When analyzing randomized data structures, one commonly assumes access to fully random
(or uniform) hashing. That is, access to a random function f such that the hash value f(x)
is distributed uniformly and independently of all other hash values. This function possesses
powerful qualities that make it easier to analyze complicated processes and data structures, but
with it comes an important drawback: its space usage. Storing a fully random hash function
requires storing the hash values of all keys in the universe, making the implementation of f
intractable for all but trivial problem instances.

Results and analyses using this assumption thus carry limited practical value. Developers
wishing to implement systems based on cutting-edge research can’t implement the fully random
function and must instead replace it with some other other function of their choice – preferably
on that looks random – losing all mathematical guarantees promised by the research paper.

When studying realistic hashing, the emphasis is instead placed on devising solutions that
rely on hash functions which can feasibly be implemented, even if this comes at a cost in terms
of slightly worse running time or otherwise weaker guarantees as compared to what is otherwise
considered to be the state of the art.

Besides keeping this goal in mind when designing new data structures, a second approach to
producing practically relevant research is to revisit published results that base their analyses on
fully random hashing. By carefully inspecting the ways they rely on their supplied hash functions,
it may be possible to prove some of the stated guarantees while making weaker assumptions on the

5

hash function applied. The hope is that the fully random function can be swapped for a realistic
alternative while keeping the guarantees afforded by the original analysis – approximately, if not
exactly.

2.1.1 k-independence

The most well-known families of implementable hash functions with such formal guarantees are
captured by the hierarchy of k-independent hash functions introduced by [WC81].

Definition 2.1. A hash function h : U → R is k-independent if, for all {x1, . . . , xk} ⊆ U and all
y1, . . . , yk ∈ R,

Pr

[
k∧

i=1

h(xi) = yi

]
=

(
1

|R|

)k

.

Intuitively, the behavior of a k-independent function is indistinguishable from that of fully
random hashing whenever the event under inspection is defined on no more than k keys at
a time. A k-independent function can be implemented as a polynomial of degree k − 1 with
random coefficients, and can thus be stored in O(k) words of space and evaluated with k − 1
multiplications.

Naturally, a larger parameter k gives a function with stronger properties. An example of this
is seen in the work of [PPR09, PT10] studying Linear Probing, a simple way of implementing
hash tables. In [PPR09] it is shown that the update time of Linear Probing implemented with 5-
independent hashing is only a constant factor away from that achieved when “implemented” with
fully random hashing, as studied by [Knu63]. 4-independence, on the other hand, is insufficient
[PT10], leading to significantly worse performance when exposed to certain structured update
sequences.

But to get stronger properties, like Chernoff-style concentration bounds, a high degree of
independence may be required. To obtain concentration bounds giving error probability p,
independence of order log(1/p) is required in the analysis of [SSS95]. At this point the running
time of the hash function becomes an issue for high-throughput systems.

Although an important tool for making research relevant for implementation, k-independence
(as obtained through polynomials) is not a silver bullet allowing us to implement everything
without significant sacrifices. Instead we look to functions with a slightly different property.

2.1.2 Uniform Hashing

Rather than requiring the hash function to behave independently on all sets of a given size, we
can inspect the behavior of the function on specific sets of keys.

Definition 2.2. A hash function h : U → R is uniform on a set of keys {x1, . . . , xℓ} ⊆ U if the

ordered set of hash values (h(xi))
ℓ
i=1 is uniformly distributed over Rℓ.

By this definition, the k-independent functions are exactly those that are uniform on all sets
of size (up to) k, while the fully random function is uniform on the full universe U .

Work by Pagh and Pagh [PP08] as well as Dietzfelbinger and Woelfel [DW03] constructed
hash functions that are uniform on larger key sets whp. That is, for any fixed set of keys X (up to
some size), there is an associated good event E such that, when conditioning on E , h is uniform
on X. Event E happens with high probability, but in the rare case where it fails no guarantees
are made on the behavior of the hash function.

If we could let X be the full set of keys presented to our data structure, all claims made
under the assumption of fully random hashing would immediately apply when implemented with

6

these hash functions instead, only with an added error probability of Pr[¬E]. This works great
for smaller problem instances, but these families naturally become more expensive when they
need to support larger sets.

For data structures like the Invertible Bloom Filter [EG11], this is less of a problem. An IBF
can be exposed to an unbounded number of insertions, with the promise that the vast majority
of elements will end up being removed again (for more on IBFs see section 2.5) The structure
of the IBF makes it deletion-independent, in the sense that the state of the data structure is
independent of prior insertion/removal pairs, and future performance is thus only dependent on
the (few) keys left in the structure. Letting X be this set of leftover keys brings the requirements
on our hash function down to a more manageable level.

2.1.3 Locally Uniform Hashing

The main issue with the procedure outlined in the preceding section is that we include far too
many keys in X, making the hash functions expensive. The work of [DKRT15] introduced a layer
of indirection, allowing for the set X to be chosen in a more intelligent manner. In the same
way that the state of an IBF only relies on a subset of the keys passed through it, other data
structures exhibit properties that we can exploit in order to define a narrower set of “important”
keys.

Two such examples, as discussed by [DKRT15], are MinHash (by [Bro97]) and HyperLogLog
(by [FEFGM07]) – both approaches to estimating the number of distinct elements in data
streams. Although the two methods differ in their way of computing estimates, they share
a common trait: They only save the smallest hash value(s) encountered while processing the
stream. Thus the estimates given are independent of the vast majority of hash values, and if
we could guarantee uniformity on the few keys that end up deciding the estimate, the scheme
would performing as if implemented with fully random hashing. One way of “selecting” this set
of important keys, would be to let X be all keys with hash values below a set threshold – a
threshold set high enough that, with high probability, it will capture the necessary key(s), yet
low enough that not too many keys will be selecting.

Obviously, the tools presented thus far doesn’t allow us to make claims about a set defined
in this manner. Picking keys based on their hash values reveals information about the random
function, and thus invalidates a crucial assumption made in the previous publications: that X
is defined independently of the hash function h.

Yet this is exactly what the work of [DKRT15] allows for, with certain technical restrictions.
Specifically, they show that their function is uniform (whp) on the set X defined as the preimage
h−1([a, b)) = {x ∈ S : h(x) ∈ [a, b)}, given that [a, b) forms a dyadic interval. That is, a and b
must be of the form a = ℓ · 2p, b = (ℓ + 1) · 2p for non-negative integers ℓ, p, thus defining an
interval of length 2p.

We say that their hash function, Mixed Tabulation (see section 2.2), is locally uniform due
to the way it is uniform on keys whose hash values are close to each other – one could say that
it is uniform on the interval [a, b) ⊆ R. For this claim to make sense, we need to generalize our
understanding of uniformity a bit. Clearly, h(X) isn’t uniformly distributed over R|X| when we
already know that h(x) ∈ [a, b) for all x ∈ X. What uniformity gives us instead is a guarantee
that h(X) is uniformly distributed over [a, b)|X|, as if this was the codomain of h.

Unfortunately, it isn’t clear for all applications which interval [a, b) will contain the important
keys. We introduce the concept of a query key in [BBK+23] as a remedy, and discuss this addition
in section 2.3.

7

2.1.4 Feasibility of Implementation

A concern we haven’t touched upon till now is whether the hash functions covered can feasibly
be implemented. The functions proposed by [PP08, DW03] for obtaining uniformity are rather
complex – perhaps too complex to be useful in a practical setting, even for providing uniformity
on smaller sets. As far as I’m aware, no one has successfully implemented these schemes and
it thus seems doubtful that this can be done in a way that yields the throughput required of a
modern system.

In section 2.2 we meet a family of remarkably simple functions, Simple Tabulation, that are
uniform on very large sets of keys, under the condition that the key sets are free from a specific
type of bad pattern (see section 2.3.1). For adversarially chosen keys this family may perform
poorly, yet it forms the main building block for both Mixed Tabulation of [DKRT15], as well as
for Tornado Tabulation which we introduce in the following section.

A second concern is the nature of the probabilistic guarantees given. The results on the
functions covered up to this point all state their error probabilities in terms of O-notation, thus
placing the emphasis on how the probability scales with the parameters involved. Although this
dependency is interesting in a theoretical context, an engineer implementing these systems won’t
have the luxury of letting parameters tend to infinity in order to bring down the error probability.
Rather, they need to balance a budget between time and space usage and the associated error
probability afforded by the hash function. In this context O-notation carries little value, as it
isn’t even able to guarantee that the error probability will be strictly below 1 for a concrete set
of parameters – only that the functions are useful for sufficiently large parameters, which may
or may not be compatible with current hardware.

2.2 Tabulation-Based Hash Functions

In [BBK+23] we introduce Tornado Tabulation Hashing, a new family of functions based on fast
table lookups and xor operations, building blocks dating back to Simple Tabulation of [Zob70].

A Simple Tabulation function interprets each key as be a sequence of c characters belonging
to an alphabet Σ, and maps the key to a bitstring of length r. It does this through a sequence
of lookups into tables of size |Σ|, returning the xor of the lookup values as the hash value.

Definition 2.3 (Simple Tabulation, [Zob70]). For positive integers c, r and universe Σ the Simple
Tabulation function h : Σc → [2r] is defined as

h(x) =

c⊕
i=1

Ti[xi] ,

where x = (x1, . . . , xc), and T1, . . . , Tc is a collection of tables indexed by Σ, each entry containing
an independently drawn value from [2r]. ⊕ denotes the bitwise xor-operation.

Tornado Tabulation builds upon the ideas of previous tabulation based schemes like Double
Tabulation [Tho13] and Mixed Tabulation [DKRT15]. Tornado Tabulation can be considered an
iterated version of Simple Tabulation, computing a derived key x̃ ∈ Σc+d from x ∈ Σc, and then
applying a Simple Tabulation function hd+1 : Σ

c+d → [2r] to x̃.
We construct the derived key in the following way: The first c − 1 characters of x̃, denoted

x̃1, . . . , x̃c−1, are the same as in x, and the c’th character x̃c is the xor of xc and the result of a
Simple Tabulation function applied to x. Each of the following d derived characters are computed
through the use of (independent) Simple Tabulation functions, hi : Σ

c+i−1 → Σ, applied to
prefixes of the derived key:

8

Definition 2.4. For a key x ∈ Σc the associated derived key x̃ ∈ Σc+d is defined as

x̃i =

xi for i < c

xc ⊕ h0(x1 . . . xc−1) for i = c

hi−c(x̃1x̃2 . . . x̃i−1) for i ∈ {c+ 1, . . . , c+ d} ,

where {hi}di=0 are independent Simple Tabulation functions Σc+i−1 → Σ.

Definition 2.5 (Tornado Tabulation, [BBK+23]). For positive integers c, r, d and universe Σ
the Tornado Tabulation function h : Σc → [2r] with d derived characters is defined as

h(x) = hd+1(x̃) ,

where hd+1 : Σ
c+d → [2r] is a Simple Tabulation function.

There’s a lot to unpack in these definitions, so let us try to establish an overview of the
parameters and the roles they play:

Σ Arguably the most important parameter to settle when deciding how to use Tornado Tabu-
lation hashing. Not only does Σ decide the size of the tables stored, affecting space usage,
it also defines the size of sets X we can claim uniformity on – our results apply to sets of
size |Σ|/2.
Besides its direct effect on space usage, a connection to running time has been observed
due to the relationship between space usage and cache efficiency.

c The length of the input keys. Must be set such that Σc corresponds to the universe of keys.

d Decides the number of derived characters to compute, and decreases the probability of leaving
bad patterns in the derived keys (see section 2.3.1). d also has a direct impact on running
time, as it influences the number of lookups performed.

r The function produces hash values of r bits. This parameter is important for the application
that Tornado Tabulation is to support, but it has little impact on the function itself. From
an implementation standpoint, r sets requirements on the data types used for implementing
lookup tables and carrying intermediate values, which can influence the evaluation time.

For comparison, consider the definition of Mixed Tabulation, whose derived keys are computed
in one go:

Definition 2.6 (Mixed Tabulation, [DKRT15]). For positive integers c, r, d and universe Σ, let
h1 : Σ

c → Σd and h2 : Σ
c+d → [2r] be independent Simple Tabulation functions. The Mixed

Tabulation function h : Σc → [2r] is defined as

h(x) = h2(x ◦ h1(x)) ,

where ◦ denotes the concatenation of character-sequences.

Intuitively, the parameters given above play much the same roles between Mixed and Tornado
Tabulation, the main difference being that Mixed computes all d derived characters through the
use of a single function while Tornado Tabulation computes them in sequence.

An implementation faithful to the way Tornado Tabulation is defined above will end up
evaluating d Simple Tabulation functions in sequence, leading to ≈ d(c + d) lookups. However,
by observing that we keep using the same values to perform lookups into new tables – once
a character has been computed, it doesn’t change – we can implement Tornado Tabulation
by performing just c + d lookups in sufficiently large tables. This brings the evaluation time
significantly closer to that of Mixed Tabulation (which can likewise be implemented in c + d
lookups). C-code implementing Tornado Tabulation in this way is included in appendix A.

9

2.3 Locally Uniform Hashing with Tornado Tabulation

The results we show for Tornado Tabulation in [BBK+23] closely mirror those for Mixed Tabula-
tion, but with better dependencies on the parameters of the hash function and explicit probability
bounds. Thus, whereas the error probabilities given in [DKRT15] are stated as asymptotic func-
tions of the involved parameters, the guarantees we give can be computed based on a concrete
set of parameters – showing that the function is actually useful when implemented with tractable
parameters. A brief overview of the way the proofs differ is given in section 2.3.1.

We further extend the applicability of local uniformity by introducing the concept of a query
key. Whereas the results of [DKRT15] required the “important” interval defining X to be fixed
in advance, we can instead inspect the hash value of the query key and base our choice of interval
on this value. To see the value of this addition (which is admittedly rather technical) I will briefly
sketch our application to Linear Probing in section 2.3.2.

2.3.1 Techniques for Showing Uniformity

In [TZ12] it was shown that Simple Tabulation is uniform on a set X if and only if X is free of
zero sets. A set of keys forms a zero set if, when hashed by Simple Tabulation, each table entry
is touched an even number of times (possibly zero).

The simplest example of a zero set is the keys x1 = αα, x2 = αβ, x3 = βα, and x4 = ββ.
By inspecting the lookups performed when the Simple Tabulation function h computes their
hash values, it is seen that h(x4) = ⊕3

i=1h(xi). For any set of three keys, on the other hand,
the keys can be “ordered” in such a way that x2 depends on a table entry not touched by x1,
and x3 depends on a table entry not used by any of the two – hence the three keys are hashed
independently of each other, and it is seen that Simple Tabulation is 3-independent.

As a Tornado Tabulation function h (like Mixed Tabulation) can be decomposed into a pre-
processing step (computing the derived keys) and a Simple Tabulation function, showing that h
is uniform on X boils down to showing that the set of derived keys, X̃, produced by the first
step doesn’t contain any zero sets.

In [BBK+23] we exploit that a zero set among the derived keys would imply that the derived
keys can be grouped into pairs of two, with each pair sharing the same derived character x̃c+d in
the final position. This is shown to happen with probability at most O(1/|Σ|), but as this must
happen at each level (and these events are, to some extent, independent), the risk of producing
a zero set drops by O(1/|Σ|) for each additional derived character added to the keys.

For comparison, the proof of [DKRT15] relies on the stronger property of peelability. Peela-
bility extends the argument given for 3-independence at the top of this section, and entails that
the derived keys X̃ can be ordered in such a way that, for all i ≤ |X|, h(x̃i) accesses a table
entry that no prior key has used – thus certifying that h(x̃i) is independent from all prior hash
values. At a high level, they show that this is unlikely by considering the derived characters
in two specific positions, and arguing that the characters in these positions (across all derived
keys) must, like in our proof, form a particular structure if they are not peelable. For a pair
of positions, this structure will occur with probability roughly O(1/|Σ|). Adding more derived
characters will decrease the error probability, but only by a factor of O(1/|Σ|) for every two
derived characters, due to their structure relying on two positions.

For a fixed number of table lookups, Tornado Tabulation thus achieves a significantly smaller
error probability.

10

2.3.2 Application to Linear Probing

Linear Probing is a simple method for implementing a hash table T . For inserting an element x,
a location T [h(x)] is computed using a hash function h, and x is inserted into this cell if it not
already occupied. If a different element occupies the cell, we will continue probing the following
cells, T [h(x) + 1], T [h(x) + 2], . . ., until an available cell is found, into which we place x.

Intuitively, there is some local nature to Linear Probing, seeing as only a contiguous range
of entries are probed during insertion. However, it is not known in advance which part of the
table is of interest to us; this wholly depends on the value h(x). What we do know, is that
elements whose hash values are close to h(x) will play a more direct role in the placement of x
than elements with hash values in the opposite end of the table.

With our introduction of a query key in [BBK+23] we can define the set of “important
keys” X to be the preimage centered around h(x), namely h−1([h(x) −∆, h(x) + ∆]) for some
appropriately chosen ∆, and thus capture the elements having the largest impact on our insertion
procedure.

Combine this with work done by Pătraşcu and Thorup [PT12] showing that, for Linear
Probing with Simple Tabulation (which Tornado Tabulation is a generalization of), the longest
interval of occupied cells will, whp, be O(log n), where n is the number of inserted elements.
Setting ∆ = Θ(log n), we thus arrive at a situation where the insertion of x is entirely defined
by the distribution of h(X) in the table.

When Tornado Tabulation is uniform on X the insertion of x will (whp) proceed exactly as if
hash values of all inserted elements had been computed with fully random hashing – conditioning
on the event where the fully random hash function maps exactly the elements ofX into our chosen
interval [h(x)−∆, h(x)+∆]. This is an unlikely event, and makes for a difficult analysis. Instead,
we consider the case where at least |X| elements are mapped into the interval. Then the two
experiments (one using Tornado Tabulation, the other employing fully random hashing) can be
coupled, and it is seen that the number of probes performed when inserting x in one experiment
is stochastically dominated by the insertion time of the other.

It should be noted, as mentioned in section 2.1.1, that Linear Probing implemented with
5-independent hashing [PPR09] gives the same performance as when implemented with fully
random hashing, asymptotically. That is, up to some constant multiplicative factor. What we
show is that Linear Probing with Tornado Tabulation performs as if fully random hashing had
been applied, with only additive lower order terms in excess. We do pay some small error terms
in order to establish the comparison given above, but when we have reduced Linear Probing to
the setting where we claim uniformity we can reuse the classic analysis done by Knuth [Knu63].

2.4 Sampling-Based Estimation

In our second paper, we wish to show concentration bounds for Tabulation Hashing. That is, we
let X be the set of keys hashed to a specific value (or range of values) and wish to bound the
deviation of |X| from µ = E[|X|]. We say that keys in X have been selected.

Had the hash values been decided through the use of fully random hashing, the indicator
variables [x ∈ X] would be independent for all keys x. In this case we could have applied the
classic Chernoff bound, giving

Pr[||X| − µ| > δµ] < 2 exp(−δ2µ/3)

for all δ ≤ 1. When a practical hash function is used, however, the indicators are no longer
independent and we need to establish such tail bounds through other means.

11

While the Chernoff bound describes the behavior of sums of independent indicator variables,
we can’t generally expect tail bounds for practical hash functions to be as strong. Yet, we already
showed the “upper tail” in [BBK+23], bounding the probability that X significantly exceeds its
expected size, which we also relied on in the argument presented in section 2.3.2. The subject of
[ABH+24] is thus the “lower tail”, bounding the probability that fewer elements than expected
are selected.

Thus we can finally implement the applications covered in [DKRT15] (such as MinHash) as
well as other sampling problems like Bernoulli Sampling. For the applications in [DKRT15] they
showed a single concentration bound for Mixed Tabulation, bounding the probability that the

number of selected keys deviates from its expectation by a factor of δ = Õ
(√

(log|Σ|)/|Σ|
)
. We

instead show a general tail bound that can be evaluated at user-specified values of δ.
Our upper tail bound in [BBK+23] followed from a simple rewriting of the proof of the classic

Chernoff bound, and gave the same expression as the usual one-sided Chernoff bound. Morally,
the upper tail bound is a statement about the behavior of the keys in X – those that we claim
uniformity on with high probability – and thus it seems appropriate that these are well-behaved
and abide by the same bound as independent indicators.

The lower tail, on the other hand, is about bounding how many keys fall outside of X, and we
generally know very little about these keys. Establishing a lower tail bound ended up requiring
significant effort and resulted in an expression with worse constants than those known from
Chernoff’s bound – yet still constants. This makes Tornado Tabulation the first realistic hash
function with Chernoff-style tail bounds containing explicit constants.

2.4.1 Showing Lower Tails for Tornado Tabulation

In order to prove our lower tail bound we wish to find a way of expressing |X|, the number of
selected elements, in terms of indicators that are independent.

At a high level, our setup is as follows: For each α ∈ Σ, let Yα be the set of all keys whose
final derived character is α, and let Xα ⊆ Yα be the subset of those keys that are selected (that
is, whose hash value is contained in our interval of choice). We refer to the Xα as bins. For each
i ∈ {1, 2, . . . }, let Si = |{α : |Xα| ≥ i}|. Si thus counts the number of bins containing at least i
keys. This allows us to express the number of selected keys as |X| = ∑∞

i=1 Si,
Next, observe that the computation of derived keys is what decides the sets Y = {Yα}α∈Σ

and that, when conditioning on Yα, the inclusion of elements in Xα is entirely decided by the
final application of Simple Tabulation. Seeing as each Yα depends on a unique character α,
the process of choosing Xα from Yα is independent from the computation of all other Xβ ⊆ Yβ

(again, conditioning on Y already being settled).
When conditioning on Y, the Xα’s are thus independent, and the sum Si becomes a sum

of independent indicator variables. Our goal is to bound the deviation of |X| from E[|X|] =
µ by bounding the differences between Si and E[Si]. With Si being a sum of independent
indicators, we can bound its deviation through the use of a regular Chernoff bound. But due
to the conditioning on variables Y, Si is no longer concentrated around E[Si] but must instead
be compared to the conditional expectation E[Si | Y]. Fortunately,

∑
i E[Si | Y] =

∑
i E[Si] = µ,

so our overall strategy for bounding the deviation still holds, but we need a way to control
the conditional expectations as they influence the concentration of the Si’s. Specifically, the
event (Si < E[Si | Y]−∆) is more likely the larger the conditional expectation is. Somewhat
counterintuitively, we thus need to establish an upper bound on E[Si | Y] in order to get the
desired lower bound on Si.

To bound the conditional expectation, we first give an upper bound on Si =
∑

α [|Xα| ≥ i].
The indicator variables are not independent (as one bin being large suggests that other bins

12

are small), but we can still bound their sum through a Chernoff bound. Finally, we again use
that Si =

∑
α [|Xα| ≥ i] is a sum of independent indicators when conditioned on Y, and thus its

median equals E[Si | Y]± 1 (by [JS68]). This allows us to “translate” any upper bound on Si to
a bound on E[Si | Y], giving us the final piece needed for our bound.

To summarize: For each layer i ≥ 1, we give an upper bound on Si, translate it to a bound on
the conditional expectation E[Si | Y], and use it to give a bound on ∆i = E[Si | Y]−Si. Summing
the ∆i’s, we arrive at a bound on the deviation between |X| and µ. The concrete way we perform
these bounds depends on the layer in question, namely the relationship between E[Si] and the
error probability we are trying to show.

2.5 What’s Next?

Tornado Tabulation is showing some promise as a hash function that could find practical appli-
cation, but there’s always more work to be done. The following is a collection of ideas for next
steps in Tornado Tabulation as well as realistic hashing more generally.

Running Time An experimental study investigating the running time of several variants
of tabulation-based hashing was done by [ADK+22], adding to their credence as practically
relevant families of hash functions. Despite their similarities, preliminary benchmarks suggest
that Tornado Tabulation can’t quite match the running time of Mixed Tabulation. This owes
to the fact that Tornado Tabulation is of a very iterative nature, whereas Mixed Tabulation
can perform several lookups in parallel. Still, Tornado Tabulation is observed to outperform
the evaluation of polynomials of modest degree, with the evaluation time of Tornado Tabulation
matching that of performing just a handful of multiplications, depending on the parameters used.

It is not known if a more careful analysis of Mixed Tabulation could lead to the same stronger
guarantees as those we’ve shown for Tornado Tabulation, or if the iterative approach of the latter
is somehow inherent to our results. Preliminary work suggests that the number of sequential steps
of Tornado Tabulation can be brought down somewhat, bringing its performance closer to that
of Mixed Tabulation. Answers to these questions, along with a more systematic investigation of
the runtime of Tornado Tabulation, would be interesting additions to the literature on realistic
hashing.

Poisson Sampling A next step, building on the work in [ABH+24], would be to implement
Poisson Sampling with Tornado Tabulation. As opposed to Bernoulli Sampling, which can be
implemented with our concentration bounds, each item in the stream now has its own threshold
between 0 and 1, corresponding to the probability that the element in question should be included
in the sample. Poisson Sampling forms the foundation of Priority Sampling [DLT07], which is
used to estimate subset sums, in a setting where the elements of the stream all carry different
weights. If we can generalize the obtained concentration bound to also apply to sums of weighted
variables (rather than just indicators), it seems feasible to obtain Poisson Sampling. The proof
we present in [ABH+24] is of a very combinatorial nature, though, which makes it difficult to
adapt to the weighted setting.

Non-Dyadic Intervals Although the technical details have mostly been brushed aside, we
briefly touched on the topic of intervals in section 2.1.3: that uniformity is only granted on
dyadic intervals for Mixed Tabulation, and same goes for our results on Tornado Tabulation.
Any interval can be covered by a small collection of dyadic intervals, but this still means that our

13

keys are only uniformly distributed within the dyadic interval that they are placed. Specifically,
this allows for dependencies between which elements fall into which dyadic interval.

It would make for a cleaner presentation, and much simpler application, if we could get rid
of this limitation. It arises quite naturally, however, due to the way our proofs are structured,
with selection of keys based on a fixed subset of the bits in their hash values.

Invertible Bloom Filters The Invertible Bloom Filter (IBF) is a data structure for maintain-
ing a small set under insertions and deletions, introduced by [EG11]. Usually, the size of a data
structure maintaining a set under such updates would be expected to take up space proportional
to the set stored, but the trick lies in only requiring the set to be retrievable when the set is of
cardinality less than some parameter s. Thus the space usage can be kept small at all times,
regardless of the maximum size of the set built by the stream (which could be significantly larger
than s). Closely related is the Invertible Bloom Lookup Table (IBLT), which maintains key-value
pairs through the use of the same techniques [GM11].

Both of these structures rely on peelability to allow for decoding. This property has also been
central to much work on tabulation based hashing, as peelability serves as a certificate that a
key set will be hashed uniformly (see section 2.3.1). As the proof of uniformity in [DKRT15]
is based on showing peelability of hash values computed by a Simple Tabulation function, the
simplest version of the IBF/IBLT can be implemented using Simple Tabulation hashing. This
version, however, only allows for storing simple sets, and doesn’t support false deletions where
elements are removed without a corresponding insertion.

When allowing these false deletions, along with multiple insertions, the IBF becomes a linear
sketch and can be used to compute the symmetric difference between a pair of data streams,
assuming that the difference is less than s keys. To add this feature, hash codes can be added
to each cell of the structure. Simple Tabulation is ill-suited for computing these hash codes, but
we have work suggesting that the local uniformity of Tornado Tabulation could be sufficient for
implementing the stronger structure.

An independent direction on realistic IBLTs, as recently pursued by [FLOS24], is to design
variations on the classic IBLT, such that it better lends itself to practical hash functions, requiring
O(log log s)-independent hashing.

14

Chapter 3

Online Sorting

In this section I discuss and introduce the problem of (approximately) sorting numbers online,
the topic of appendix C, Online Sorting and Online TSP: Randomized, Stochastic, and High-
Dimensional ([ABB+24]). I presented a shorter version of this paper (without the appendix) at
ESA ’24, that version of the paper is available online at https://doi.org/10.4230/LIPIcs.

ESA.2024.5. The full version found in appendix C matches the version available on arXiv,
https://doi.org/10.48550/arXiv.2406.19257.

3.1 The Problems

The main problem of study in appendix C is Online Sorting, introduced by by Aamand, Abra-
hamasen, Beretta, and Kleist [AABK23] as a tool for proving lower bounds for online Strip
Packing.

Definition 3.1 (Online Sorting, [AABK23]). In Online Sorting a stream of n real values arrive
one by one. Each value must, immediately and irrevocably, be placed into an array T of n cells
such that the objective

n−1∑
i=1

|T [i]− T [i+ 1]|

is minimized.

Sorting the input (either in non-decreasing or non-increasing order) minimizes the objective,
hence the name Online Sorting. It is easily seen, however, that we can’t reliably sort numbers
when we have to irrevocably assign them locations in the array in this online manner. We thus
study approximations instead.

Throughout this chapter (and in most of [ABB+24]) we assume that all values are between
0 and 1, with both values included in the instance. Hence the optimal value will always be 1,
which makes for a simpler analysis of approximation ratios. In [ABB+24] we show that we can
remove this assumption without affecting the asymptotic cost of our algorithm.

A second variant of Online Sorting, also introduced by [AABK23], is where the array has size
γn for some γ > 1. Here the cost function is adapted in the obvious way, summing differences
between filled cells.

We further study a generalization of Online Sorting which we call Online TSP. Note that
Online Sorting corresponds to Online TSP in one dimension.

15

https://doi.org/10.4230/LIPIcs.ESA.2024.5
https://doi.org/10.4230/LIPIcs.ESA.2024.5
https://doi.org/10.48550/arXiv.2406.19257

Definition 3.2 (Online TSP, [ABB+24]). In Online TSP a stream of n points from Rd arrive
one by one. Each point must, immediately and irrevocably, be placed into an array T of n cells
such that the sum of Euclidean distances,

n−1∑
i=1

∥T [i]− T [i+ 1]∥ ,

is minimized.

We show an O(√n log n)-competitive algorithm for Online TSP in constant dimensions in
[ABB+24], but will not treat the problem further in this thesis.

3.2 Previous Work

In [AABK23] a deterministic O(√n)-competitive algorithm was presented, along with a matching
adaptive lower bound, showing that no deterministic algorithm could beat Ω(

√
n).

Their lower bound construction is rather simple: At any point during the execution of an
algorithm A, denote the value stored in each cell T [i] an endpoint, if any of T [i− 1] and T [i+1]
are unoccupied. Let a value be expensive if is at least 1/

√
n from all endpoints.

Their expensive input is constructed as follows:

1. If an expensive value exists, present it as the next element of the stream.

2. If no value in [0, 1] is expensive, fill the remainder of the stream with all 0’1 or all 1’s,
whichever would be more expensive.

If the construction ever enters the second step, at least Ω(
√
n) endpoints are present, and

hence the stream of 0’1 or 1’s will incur cost Ω(
√
n). Likewise, if the construction stays in the

first step, each neighboring pair will incur cost at least 1/
√
n, leading to a total cost of roughly√

n. Hence any deterministic algorithm A will, in the worst case, produce a solution of cost
Ω(
√
n).
The main open problem left by [AABK23] was whether a randomized algorithm could do

better. In [ABB+24] we show that no such algorithm exists.

3.3 Contributions

We prove a number of results in [ABB+24], related to different variations and settings of Online
Sorting and Online TSP. In the following sections I give an overview of my personal favorites.

3.3.1 Randomized Algorithms

We show that no randomized algorithm for Online Sorting can be o(
√
n)-competitive by con-

structing an expensive distribution of inputs. The distribution builds on the ideas used in the
lower bound of [AABK23], as discussed in section 3.2.

• With probability 1− 1/
√
n: present the values {i/√n}

√
n

i=1 as the next
√
n elements of the

input sequence.

• If the experiment above fails, fill the remainder of the input with all 0’s or all 1’s, each
chosen with equal probability.

16

The analysis of this distribution relies entirely on the number of endpoints (or, equivalently,
“gaps”) produced by the algorithm while processing the input. When inserting the sequence of
elements from case 1 above, it is beneficial to have Ω(

√
n) endpoints, such that most values can

be placed next to an identical element. The cost of inserting the stream of 1’s/0’s, however,
scales linearly with the number of endpoints.

Thus no strategy will be able to handle both cases cheaply. Due to the probability of entering
each of the two cases all deterministic algorithms will thus, in expectation, give solutions of cost
Ω(
√
n) on this input distribution. By Yao’s Lemma this rules out the existence of a better

randomized algorithm for Online Sorting.

3.3.2 Stochastic Input

We study Online Sorting under a new model where the input consists of independently and
uniformly distributed values in [0, 1]. When designing algorithms for this model we’ve drawn
some inspiration from the study of data structures. Letting array T (or a subarray) represent
the number line from 0 to 1, each incoming element maps naturally to a specific cell of T . When
values are independent and uniform, this gives the same sequence of accesses to T as when
designing hash tables under the assumption that elements are assigned fully random hash values
(see chapter 2 for more on this assumption and why it is otherwise usually discouraged).

Our first result in this direction is an algorithm A which, with probability at least 1 − 2/n,
produces a solution of cost Õ(n1/4).
A partitions T into M buckets and a small backyard. Each bucket is a contiguous subarray of

T , with the i’th bucket meant to hold values in the interval [i/M, (i+ 1)/M). For each element
x arriving, A attempts to place it in the corresponding bucket. If the bucket is already full, x is
instead placed in the backyard.

As the set of elements placed within a bucket are themselves independent and uniformly
distributed in [i/M, (i+1)/M), we can apply A recursively in the bucket. For deciding the loca-
tions of elements within the backyard, the deterministic Online Sorting algorithm of [AABK23]
is applied.

The algorithm terminates correctly if all buckets are filled with appropriate elements. In
other words, the algorithm only fails if too few elements of some size is found in the input. The
probability of this event can be bounded by a union bound over all buckets, applying a standard
Chernoff bound for each corresponding interval of [0, 1].

Larger Arrays A second result is in the setting of larger arrays, where not all cells of T will
be filled. Specifically, we assume that |T | = γn for a constant γ > 1. We present an algorithm
A which, in this setting, produces a solution of cost O(1 + 1/(γ − 1)) with high probability.
A is heavily inspired by Linear Probing, a simple way of implementing hash tables (Linear

Probing has appeared once before in this thesis, see section 2.3.2). We set aside a buffer at the
end of T , and let the remainder of T (call it T ′) represent the number line from 0 to 1. Then each
value x maps into a specific cell of T ′, computed by h(x) = ⌊x/|T ′|⌋. Algorithm A first attempts
to insert x into T [h(x)]. If this fails due to a different element occupying the cell, T [h(x) + 1]
is attempted, and so forth. Note that this process may insert x into the buffer, but with high
probability we will never wrap around to T [0] during insertion. In the worst case, if we do need
to wrap around, we conservatively bound the cost of the solution at n.

To analyze A, we rely on observations linking the cost of our solution to the procedure of
Linear Probing: Consider the point in time where an element x is inserted into a cell T [i] where
T [i+1] is already occupied. The cost |T [i]−T [i+1]| incurred by this insertion, can be bounded
by (i− h(x))/|T ′|, which is 1/|T ′| times the number of probes performed during insertion.

17

A similar argument applies to the cost |T [i]−T [i+1]| where T [i] is filled before T [i+1]. The
classic analysis by Knuth [Knu63] bounds the expected number of probes during insertion, and
hence allows us to bound the expected cost of the solution produced by A.

3.4 Open Questions

We raise a number of open questions:

• Can we find a better solution in the case of stochastic input?

• Can we extend the arguments of section 3.3.2 to cover other input distributions?

• Can we say anything about the setting of larger arrays if the input is adversarial?

And finally, can a useful connection be made to Online List Labeling (or Order Maintenance)?
Online List Labeling is, in some sense, the opposite of Online Sorting. Again, elements arrive
sequentially, but their positions in T are no longer final. Instead the (partial) solution must
be sorted at every step of the algorithm, while minimizing the total number of times elements
have to be moved. First treated in the early 1980’s [IKR81, Die82], this is a significantly older
problem with a rich literature. Can any interesting connections between the two be established?

18

Chapter 4

Constrained Correlation
Clustering

In this chapter I present and discuss the contents of appendix D, A Faster Algorithm for Con-
strained Correlation Clustering. At STACS ’25 I presented a shortened version of this paper,
which is available online at https://doi.org/10.4230/LIPIcs.STACS.2025.32. The full ver-
sion given in appendix D matches the version available on arXiv (https://doi.org/10.48550/
arXiv.2501.03154).

I first introduce the problems we study before presenting our results on Constrained Correla-
tion Clustering in section 4.2 and, in section 4.3, presenting one of our results on Node-Weighted
Correlation Clustering, a new problem we introduce in [FKKT25].

4.1 The Problems

Correlation Clustering, introduced by Bansal, Blum, and Chawla [BBC04], is a clustering prob-
lem on graphs. The input consists of a vertex set V which must be clustered (that is, partitioned)
along with a preference for each pair of vertices, given as a set of edges E. If {u, v} ∈ E vertices
u, v prefer to be clustered together (that is, to be included in the same cluster), while {u, v} ̸∈ E
denotes that u, v prefers to be in different clusters. The objective of Correlation Clustering is to
find a clustering of the vertices violating as few of these preferences as possible.

When C is a clustering we say that it induces the edge set EC =
⋃

C∈C
(
C
2

)
, corresponding to

the set of preferences satisfied by C. Our objective can then equivalently be stated as finding the
clustering C which minimizes the symmetric difference between C and E.

Definition 4.1 (Correlation Clustering, [BBC04]). A graph G = (V,E) is given as input. Return
a clustering C of V minimizing the symmetric difference |EC∆E| between E and the edge set
induced by C.

One trait setting Correlation Clustering apart from other popular clustering objectives like
k-median is that the number of clusters isn’t specified as part of the input. Thus C = {V } and
C = {{v1} , . . . , {vn}} – a single cluster, or n singleton clusters – are both valid solutions to
Correlation Clustering, but the optimal solution is likely found somewhere between these two
extremes.

Constrained Correlation Clustering (CCC) was introduced shortly after by van Zuylen, Hegde,
Jain, and Williamson [vZHJW07] and promotes a subset of the preferences to hard constraints.

19

https://doi.org/10.4230/LIPIcs.STACS.2025.32
https://doi.org/10.48550/arXiv.2501.03154
https://doi.org/10.48550/arXiv.2501.03154

That is, a clustering must satisfy all constraints, while still minimizing the number of violated
preferences.

Definition 4.2 (Constrained Correlation Clustering, [vZHJW07]). A graph G = (V,E) is given

as input, along with hard constraints F ⊆ E and H ⊆
((

G
2

)
\ E

)
. Return a clustering C of V

minimizing the symmetric difference |EC∆E| between E and the edge set induced by C, such
that (F ∪H) ∩ (EC∆E) = ∅.

We say that the set F denotes pairs of friendly vertices (which must be clustered together)
while the pairs in H are said to be hostile (and must be kept apart).

While introducing the problem, [vZHJW07] also gave a 3-approximation algorithm to CCC,
running in time O(n3ω), with ω ≥ 2 being the matrix multiplication constant. Our main result
in [FKKT25] is a significantly faster algorithm computing a 16-approximation in Õ(n3) time. I
present the ideas behind this algorithm in section 4.2.

In [FKKT25] we further introduce a new variant of Correlation Clustering, where each vertex
carries a weight denoting how important its preferences are:

Definition 4.3 (Node-Weighted Correlation Clustering, [FKKT25]). A graph G = (V,E) with
vertex weights w : V → R+ is given as input. Return a clustering C of V minimizing∑

{u,v}∈EC∆E

w(u) · w(v) .

We present a linear time randomized algorithm computing a 3-approximation to NWCC in
[FKKT25]. In section 4.3 I give an overview of this algorithm.

4.2 A Faster Approximation Algorithm

Our algorithm can be broken down into three steps:

1. Transform the instance to one having nice neighborhoods – without significantly altering
the cost of the optimal solution.

2. “Forget” the hard constraints.

3. Run a Pivot algorithm on the produced (unconstrained) instance.

The class of Pivot algorithms is defined in section 4.2.1. We say that the neighborhoods of the
graph are nice if they satisfy the following:

1. If u and v are friendly they have the same neighborhood.

2. If u and v are hostile their neighborhoods are disjoint.

We obtain these properties through a sequence of simple modifications, like computing the tran-
sitive closure of all friendly constraints and removing edges between components containing a
hostile pair. The most advanced step is a final rounding step to unify the neighborhoods of
friendly vertices.

The change to the optimal solution’s cost is bounded by the number of modified edges, which
we bound by (1+

√
5) times the optimal cost through an (admittedly cumbersome) case analysis.

The properties of nice neighborhoods are sufficient to guarantee that any solution produced
by a Pivot algorithm (which only knows the preferences of the modified graph) will produce a
solution that adheres to all hard constraints, see section 4.2.2.

20

The algorithm produces a solution of cost at most
(
1 +
√
5 + (2 +

√
5) · α

)
times the optimal

solution, with α being the approximation factor of the chosen Pivot algorithm. The algorithm
runs in time O(nm) plus the time for executing the Pivot algorithm. Two Pivot algorithms
are presented in the coming section, both of which yield a 16-approximation when used with our
algorithm. One is a linear time randomized algorithm due to [ACN08] while the second is a new
deterministic algorithm running in time Õ(n3).

4.2.1 Pivoting Algorithms

The class of Pivot algorithms is a family of approximation algorithms for (unconstrained)
Correlation Clustering with the structure given in algorithm 1. That is, a Pivot algorithm
chooses a pivot (according to some rule), adds its neighborhood as a new cluster, removes the
cluster from the graph, and recurses on what remains.

Algorithm 1: The generic Pivot algorithm.
Input: Graph G = (V,E)

1 C ← ∅
2 while V ̸= ∅ do
3 Choose a pivot node u (but how?)
4 Add a cluster containing u and all of its neighbors to C
5 Remove u and its neighborhood from G

Output: Clustering C

The first Pivot algorithm was CC-Pivot presented by [ACN08]. It chooses its pivot uni-
formly at random among the vertices of the (remaining) graph at each step. This gives a 3-
approximation in expectation, running in linear time.

In [FKKT25] we introduce a deterministic alternative, which picks its pivot based on the
solution of a covering LP – that is, a linear program of the form minx {cx : Ax ≥ b} for non-
negative vectors b, c, x, and matrix A. This algorithm gives a (3 + ϵ)-approximation for any
constant ϵ > 0 and, as covering LPs can be solved efficiently [WRM16], runs in time Õ(n3).

4.2.2 Correctness of Pivoting

To see that Pivot algorithms indeed produce valid solutions when used in the way presented in
the preceding section, we note the following:

1. If a friendly constraint {u, v} is violated, a pivot was chosen which was only neighboring one
of u and v. But these vertices have the exact same neighborhood after our transformation
procedure.

2. If a hostile constraint {u, v} is violated, a pivot was chosen such that both u and v were in
its neighborhood. But no such vertex exists, as their neighborhoods are disjoint.

Hence no hard constraints of the input will be violated when a Pivot algorithm is applied to
the modified graph with nice neighborhoods.

4.2.3 A Lower Bound for Pivoting

In [FKKT25] we show that no Pivot algorithm will beat an approximation ratio of 3 on all
inputs through a very simple counterexample: For even n, consider the complete graph on n

21

Figure 4.1: Construction of the lower bound described in section 4.2.3.

vertices with a perfect matching removed (see fig. 4.1 for the case n = 8). The optimal clustering
for this graph is to put all n vertices in a single cluster, at cost n/2 due to the missing matching.

A Pivot algorithm, no matter what decision rule is applied, will produce a cluster of n− 1
vertices and a singleton cluster. This will incur a total cost of n/2− 1, for the missing edges in
the large cluster, plus n− 2 edges crossing the clusters.

Thus any Pivot algorithm will, for large n, end up with a solution at thrice the cost of the
optimal.

4.3 Node-Weighted Correlation Clustering

First, assume that all weights are integers. Then Node-Weighted Correlation Clustering can
easily be reduced to an instance of Constrained Correlation Clustering by replacing each vertex
v with w(x) copies, all having the same neighborhood and all connected to each other. Adding
hard constraints between all such pairs of copies prevents this “supernode” from being split by
the solution, and each solution to the CCC-instance corresponds to a solution of same value to
the original NWCC-instance, and vice versa.

In fact, we can remove the hard constraints and run CC-Pivot (or any other Pivot algo-
rithm) directly on this graph as Pivot algorithms won’t split the supernodes (see section 4.2.1),
thus obtaining a 3-approximation as desired.

The issue at this point is that the produced graph can be significantly larger than the original
instance, and we can’t afford to run an algorithm on this huge graph. Instead, we can simulate
CC-Pivot by sampling each vertex v of the input graph with probability w(v)/

∑
u∈V w(u); this

is equivalent to running CC-Pivot on the produced graph.
In order to implement this simulation procedure efficiently, we design a data structure sup-

porting our sampling operation, as well as an operation for removing the sampled elements
and their neighbors. The data structure allows us to sample and remove all elements in linear
time, with high probability. The data structure supports non-integer weights, generalizing the
procedure to weight functions w : V → R+.

22

4.4 Open Questions

The main open question we leave in this work is whether we can approximate Constrained
Correlation Clustering to within a better factor while keeping the running time low. This goal
could potentially be reached through a better analysis of the algorithm presented in section 4.2
as we don’t have an example showing tightness of the approximation factor given.

Second, can we give approximation algorithms for other flavors of weighted Correlation Clus-
tering? The (very general) setting where arbitrary weights are put on the edges was approximated
to within a factor O(log n) by [DEFI06], who also showed a connection to Multicut which makes
further progress unlikely. But we now have approximation algorithms for graphs with edge-
weights in {1,∞} (CCC) and for graphs where weights are the product of node-weights. What
other objectives could lead to interesting results?

23

Bibliography

[AABK23] Anders Aamand, Mikkel Abrahamsen, Lorenzo Beretta, and Linda Kleist. On-
line sorting and translational packing of convex polygons. In Nikhil Bansal and
Viswanath Nagarajan, editors, Proceedings of the 2023 ACM-SIAM Symposium
on Discrete Algorithms, SODA 2023, Florence, Italy, January 22-25, 2023, pages
1806–1833. SIAM, 2023.

[ABB+24] Mikkel Abrahamsen, Ioana O. Bercea, Lorenzo Beretta, Jonas Klausen, and
László Kozma. Online sorting and online TSP: randomized, stochastic, and high-
dimensional. In Timothy M. Chan, Johannes Fischer, John Iacono, and Grzegorz
Herman, editors, 32nd Annual European Symposium on Algorithms, ESA 2024,
September 2-4, 2024, Royal Holloway, London, United Kingdom, volume 308 of
LIPIcs, pages 5:1–5:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2024.

[ABH+24] Anders Aamand, Ioana O. Bercea, Jakob Bæk Tejs Houen, Jonas Klausen, and
Mikkel Thorup. Hashing for sampling-based estimation. arXiv:2411.19394, 2024.

[ACN08] Nir Ailon, Moses Charikar, and Alantha Newman. Aggregating inconsistent infor-
mation: Ranking and clustering. J. ACM, 55(5):23:1–23:27, 2008. Announced in
STOC 2005.

[ADK+22] Anders Aamand, Debarati Das, Evangelos Kipouridis, Jakob Bæk Tejs Knudsen,
Peter M. R. Rasmussen, and Mikkel Thorup. No repetition: Fast and reliable
sampling with highly concentrated hashing. Proc. VLDB Endow., 15(13):3989–
4001, 2022.

[BBC04] Nikhil Bansal, Avrim Blum, and Shuchi Chawla. Correlation clustering. Mach.
Learn., 56(1-3):89–113, 2004.

[BBK+23] Ioana O. Bercea, Lorenzo Beretta, Jonas Klausen, Jakob Bæk Tejs Houen, and
Mikkel Thorup. Locally uniform hashing. In 64th IEEE Annual Symposium on
Foundations of Computer Science, FOCS 2023, Santa Cruz, CA, USA, November
6-9, 2023, pages 1440–1470. IEEE, 2023.

[Bro97] Andrei Z. Broder. On the resemblance and containment of documents. In
Bruno Carpentieri, Alfredo De Santis, Ugo Vaccaro, and James A. Storer, editors,
Compression and Complexity of SEQUENCES 1997, Positano, Amalfitan Coast,
Salerno, Italy, June 11-13, 1997, Proceedings, pages 21–29. IEEE, 1997.

[DEFI06] Erik D. Demaine, Dotan Emanuel, Amos Fiat, and Nicole Immorlica. Correlation
clustering in general weighted graphs. Theor. Comput. Sci., 361(2-3):172–187, 2006.

24

[Die82] Paul F. Dietz. Maintaining order in a linked list. In Proceedings of the Fourteenth
Annual ACM Symposium on Theory of Computing, STOC ’82, page 122–127, New
York, NY, USA, 1982. Association for Computing Machinery.

[DKRT15] Søren Dahlgaard, Mathias Bæk Tejs Knudsen, Eva Rotenberg, and Mikkel Thorup.
Hashing for statistics over k-partitions. In 2015 IEEE 56th Annual Symposium on
Foundations of Computer Science, pages 1292–1310. IEEE, 2015.

[DLT07] Nick Duffield, Carsten Lund, and Mikkel Thorup. Priority sampling for estimation
of arbitrary subset sums. Journal of the ACM (JACM), 54(6):32–es, 2007.

[DW03] Martin Dietzfelbinger and Philipp Woelfel. Almost random graphs with simple hash
functions. In Proceedings of the Thirty-Fifth Annual ACM Symposium on Theory
of Computing, STOC ’03, page 629–638, New York, NY, USA, 2003. Association
for Computing Machinery.

[EG11] David Eppstein and Michael T Goodrich. Straggler identification in round-trip data
streams via newton’s identities and invertible bloom filters. Knowledge and Data
Engineering, IEEE Transactions on, 23(2):297–306, 2011.

[FEFGM07] Philippe Flajolet, Éric Fusy, Olivier Gandouet, and Frédédric Meunier. Hyperloglog:
The analysis of a near-optimal cardinality estimation algorithm. In In Analysis of
Algorithms (AOFA), 2007.

[FKKT25] Nick Fischer, Evangelos Kipouridis, Jonas Klausen, and Mikkel Thorup. A faster
algorithm for constrained correlation clustering. In Olaf Beyersdorff, Michal
Pilipczuk, Elaine Pimentel, and Kim Thang Nguyen, editors, 42nd International
Symposium on Theoretical Aspects of Computer Science, STACS 2025, March 4-7,
2025, Jena, Germany, volume 327 of LIPIcs, pages 32:1–32:18. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2025.

[FLOS24] Nils Fleischhacker, Kasper Green Larsen, Maciej Obremski, and Mark Simkin. In-
vertible bloom lookup tables with less memory and randomness. In 32nd Annual Eu-
ropean Symposium on Algorithms (ESA 2024). Schloss Dagstuhl–Leibniz-Zentrum
für Informatik, 2024.

[GM11] Michael T. Goodrich and Michael Mitzenmacher. Invertible bloom lookup tables.
In 2011 49th Annual Allerton Conference on Communication, Control, and Com-
puting, Allerton Park & Retreat Center, Monticello, IL, USA, 28-30 September,
2011, pages 792–799, 2011.

[IKR81] Alon Itai, Alan G. Konheim, and Michael Rodeh. A sparse table implementation of
priority queues. In Shimon Even and Oded Kariv, editors, Automata, Languages and
Programming, pages 417–431, Berlin, Heidelberg, 1981. Springer Berlin Heidelberg.

[JS68] Kumar Jogdeo and Stephen M Samuels. Monotone convergence of binomial proba-
bilities and a generalization of ramanujan’s equation. The Annals of Mathematical
Statistics, 39(4):1191–1195, 1968.

[Knu63] Donald E. Knuth. Notes on open addressing. Unpublished memorandum. See
http://citeseer.ist.psu.edu/knuth63notes.html, 1963.

[PP08] Anna Pagh and Rasmus Pagh. Uniform hashing in constant time and optimal space.
SIAM J. Comput., 38(1):85–96, 2008.

25

http://citeseer.ist.psu.edu/knuth63notes.html

[PPR09] Anna Pagh, Rasmus Pagh, and Milan Ružić. Linear probing with constant inde-
pendence. SIAM Journal on Computing, 39(3):1107–1120, 2009. See also STOC’07.

[PT10] Mihai Pǎtraşcu and Mikkel Thorup. On the k-independence required by linear
probing and minwise independence. In Proc. 37th International Colloquium on
Automata, Languages and Programming (ICALP), pages 715–726, 2010.

[PT12] Mihai Pătraşcu and Mikkel Thorup. The power of simple tabulation hashing. J.
ACM, 59(3):14:1–14:50, 2012.

[SSS95] Jeanette P. Schmidt, Alan Siegel, and Aravind Srinivasan. Chernoff-Hoeffding
bounds for applications with limited independence. SIAM Journal on Discrete
Mathematics, 8(2):223–250, 1995. See also SODA’93.

[Tho13] Mikkel Thorup. Simple tabulation, fast expanders, double tabulation, and high
independence. In FOCS, pages 90–99, 2013.

[TZ12] Mikkel Thorup and Yin Zhang. Tabulation-based 5-independent hashing with ap-
plications to linear probing and second moment estimation. SIAM J. Comput.,
41(2):293–331, 2012.

[vZHJW07] Anke van Zuylen, Rajneesh Hegde, Kamal Jain, and David P. Williamson. Deter-
ministic pivoting algorithms for constrained ranking and clustering problems. In
Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algo-
rithms, SODA ’07, page 405–414, USA, 2007. Society for Industrial and Applied
Mathematics.

[vZW09] Anke van Zuylen and David P. Williamson. Deterministic pivoting algorithms for
constrained ranking and clustering problems. Math. Oper. Res., 34(3):594–620,
2009. Announced in SODA 2007.

[WC81] Mark N. Wegman and Larry Carter. New hash functions and their use in authen-
tication and set equality. J. Comput. Syst. Sci., 22(3):265–279, 1981.

[WRM16] Di Wang, Satish Rao, and Michael W. Mahoney. Unified acceleration method
for packing and covering problems via diameter reduction. In 43rd International
Colloquium on Automata, Languages, and Programming, ICALP 2016, July 11-
15, 2016, Rome, Italy, volume 55 of LIPIcs, pages 50:1–50:13. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2016.

[Zob70] Albert Lindsey Zobrist. A new hashing method with application for game play-
ing. Technical Report 88, Computer Sciences Department, University of Wisconsin,
Madison, Wisconsin, 1970.

26

Appendix A

Locally Uniform Hashing

27

ar
X

iv
:2

30
8.

14
13

4v
2

 [
cs

.D
S]

 2
8

Se
p

20
23

Locally Uniform Hashing

Ioana O. Bercea1, Lorenzo Beretta2, Jonas Klausen2, Jakob Bæk Tejs Houen2, and Mikkel
Thorup2

1IT University of Copenhagen , {iobe}@itu.dk
2University of Copenhagen, {beretta, jokl, jakn, mthorup}@di.ku.dk

Abstract

Hashing is a common technique used in data processing, with a strong impact on the time
and resources spent on computation. Hashing also affects the applicability of theoretical results
that often assume access to (unrealistic) uniform/fully-random hash functions. In this paper, we
are concerned with designing hash functions that are practical and come with strong theoretical
guarantees on their performance.

To this end, we present tornado tabulation hashing, which is simple, fast, and exhibits a
certain full, local randomness property that provably makes diverse algorithms perform almost
as if (abstract) fully-random hashing was used. For example, this includes classic linear probing,
the widely used HyperLogLog algorithm of Flajolet, Fusy, Gandouet, Meunier [AOFA’97] for
counting distinct elements, and the one-permutation hashing of Li, Owen, and Zhang [NIPS’12]
for large-scale machine learning. We also provide a very efficient solution for the classical
problem of obtaining fully-random hashing on a fixed (but unknown to the hash function) set
of n keys using Opnq space. As a consequence, we get more efficient implementations of the
splitting trick of Dietzfelbinger and Rink [ICALP’09] and the succinct space uniform hashing of
Pagh and Pagh [SICOMP’08].

Tornado tabulation hashing is based on a simple method to systematically break dependen-
cies in tabulation-based hashing techniques.

1 Introduction

The generic goal of this paper is to create a practical hash function that provably makes important
algorithms behave almost as if (unrealistic) fully random hashing was used. By practical, we mean
both simple to implement and fast. Speed is important because hashing is a common inner loop
for data processing. Suppose for example that we want to sketch a high-volume data stream such
as the packets passing a high-end Internet router. If we are too slow, then we cannot handle the
stream at all. Speed matters, also within constant factors.

The use of weak hash functions is dangerous, not only in theory but also in practice. A good
example is the use of classic linear hashing. Linear hashing is 2-independent and Mitzenmacher and
Vadhan [27] have proved that, for some applications, 2-independent hashing performs as well as fully
random hashing if the input has enough entropy, and indeed this often works in practice. However,
a dense set has only 1 bit of entropy per element, and [36, 30] have shown that with a linear hashing
scheme, if the input is a dense set (or more generally, a dense subset of an arithmetic sequence),
then linear probing becomes extremely unreliable and the expected probe length1 increases from
constant to Ωplog nq. This is also a practical problem because dense subsets may occur for many
reasons. However, if the system is only tested on random inputs, then we may not discover the
problem before deployment.

The issue becomes even bigger with, say, sampling and estimation where we typically just trust
our estimates with no knowledge of the true value. We may never find out that our estimates are
bad. With 2-independent hashing, we get the right variance, but not exponential concentration.
Large errors can happen way too often, yet not often enough to show up in a few tests. This
phenomenon is demonstrated on synthetic data in [2] and on real-world data in [1]. All this shows
the danger of relying on weak hash functions without theoretical guarantees for all possible inputs,
particularly for online systems where we cannot just change the hash function if the input is bad,
or in situations with estimates whose quality cannot be verified. One could instead, perhaps, use
hash functions based on cryptographic assumptions, but the hash function that we propose here is
simple to implement, fast, and comes with strong unconditional guarantees.

In this paper, we introduce tornado tabulation hashing. A tornado tabulation hash function
h : Σc Ñ R requires Opc |Σ|q space and can be evaluated in Opcq time using, say, 2c lookups in
tables with |Σ| entries plus some simple AC0 operations (shifts, bit-wise xor, and assignments). As
with other tabulation schemes, this is very fast when Σ is small enough to fit in fast cache, e.g., for
32-bit keys divided into c “ 4 characters of 8 bits (namely, |Σ| “ 28), the speed is similar to that
of evaluating a degree-2 polynomial over a Mersenne prime field.

Tornado hashing has the strong property that if we hash a set of |Σ| {2 keys, then with high
probability, the hash values are completely independent. For when we want to handle many more
keys, e.g., say |Σ|3 (as is often the case when Σ is small), tornado tabulation hashing offers a certain
local uniformity that provably makes a diverse set of algorithms behave almost as if the hashing
was fully random on all the keys. The definition of local uniformity is due to Dahlgaard, Knudsen,
Rotenberg, and Thorup [10]. The definition is a bit complicated, but they demonstrate how it
applies to the widely used HyperLogLog algorithm of the Flajolet, Fusy, Gandouet, Meunier [18]
for counting distinct elements in data streams, and the One-Permutation Hashing of Li, Owen, and
Zhang [26] used for fast set similarity. They conclude that the estimates obtained are only a factor

1The probe length is defined as the number of contiguous cells probed to answer a query of a linear probing hash
table.

1

1 ` op1q worse than if fully-random hashing was used. Interestingly, [10] proves this in a high-level
black-box manner. Loosely speaking, the point is that the algorithm using locally uniform hashing
behaves as well as the same algorithm using fully-random hashing on a slightly worse input.

As a new example, we will demonstrate this on linear probing. Knuth’s original 1963 analysis
of linear probing [25], which started the field of algorithms analysis, showed that with fully-random
hashing and load p1 ´ εq, the expected probe length is p1 ` 1{ε2q{2. From this, we conclude that
tornado tabulation hashing yields expected probe length p1 ` op1qqp1 ` 1{ε2q{2, and we get that
without having to reconsider Knuth’s analysis.

For contrast, consider the work on linear probing with k-independent hashing. Pagh, Pagh,
Ružić [29] showed that 5-independence is enough to obtain a bound of Op1{ε13{6q on the expected
probe length. This was further improved to Op1{ε2q by Pǎtraşcu and Thorup [31], who achieved
the optimal Op1{ε2q. They matched Knuth’s bound modulo some large constants hidden in the
O-notation and needed a very different analysis.

In practice, the guarantee that we perform almost like fully-random hashing means that no set
of input keys will lead to substantially different performance statistics. Thus, if we tested an online
system on an arbitrary set of input keys, then we do not have to worry that future input keys will
degrade the performance statistics, not even by a constant factor.

The definition of local uniformity is due to Dahlgaard, Knudsen, Rotenberg, and Thorup [10].
They did not name it as an independent property, but they described it as a property of their
new hashing scheme: mixed tabulation hashing. However, the local uniformity of mixed tabulation
assumes table size |Σ| Ñ 8, but the speed of tabulation hashing relies on |Σ| being small enough to
fit in fast cache and all reported experiments use 8-bit characters (see [31, 2, 1, 11]). However, none
of the bounds from [10] apply to 8 or even 16-bit characters, e.g., they assume Oplog |Σ|qc ă |Σ|.
Our new scheme avoids the exponential dependence on c, and we get explicit error probability
bounds that are meaningful, not just in theory, but also for practice with tables in fast cache.

For when we want full randomness on more keys than fit in fast cache, we could, as above,
increase |Σ| in all Opcq lookup tables. In this paper, we show that it suffices to augment the in-
cache tornado hashing with just 2 lookups in tables of size 2n to get full randomness on n keys with
high probability. This would work perfectly inside a linear space algorithm assuming fully-random
hashing, but it also leads to more efficient implementations of the spitting trick of Dietzfelbinger
and Rink [13] and the succinct space uniform hashing of Pagh and Pagh [28].

In Section 1.1 we define our hash function, and in Section 1.2 we present our technical results,
including the definition of local uniformity. In Section 1.3, we discuss more explicitly how our work
compares to mixed tabulation and explain some of our techniques in comparison. In Section 1.4
we discuss several applications. In Section 1.5, we relate our work to previous work on achieving
highly independent hash functions. Finally, in Section 1.6 we discuss how tornado tabulation can
be employed to improve the so-called “splitting trick” and succinct uniform hashing.

1.1 Tornado tabulation hashing

Simple tabulation hashing. We first introduce our main building block, which is the sim-
ple tabulation hash function dating back to at least Zobrist [38] and Wegman and Carter [37].
Throughout the paper, we will consider keys to come from the universe Σc and hash values to be
in R “ r2rs. More concretely, we interpret a key x as the concatenation of c characters x1 . . . xc

2

from Σ. We then say that a function h : Σc ÝÑ R is a simple tabulation hash function if

hpxq “ T1rx1s ‘ ¨ ¨ ¨ ‘ Tcrxcs
where, for each i “ 1 . . . c, Ti : Σ ÝÑ R is a fully-random function stored as a table.

We think of c as a small constant, e.g., c “ 4, for 32-bit keys divided into 8-bit characters, yet
we will make the dependence on c explicit. We assume that both keys and hash values fit in a
single word and that |Σ| ě 28.

Tornado tabulation hashing. To define a tornado tabulation hash function h, we use several
simple tabulation hash functions. A tornado tabulation function has a number d of derived char-
acters. Think of d as, say, c or 2c. It will later determine our error probability bounds. We will
always assume d “ Opcq so that d characters from Σ can be represented in Op1q words of memory
(since a key from Σc fits in a single word).

For each i “ 0, . . . , d, we let rhi : Σc`i´1 ÝÑ Σ be a simple tabulation hash function. Given a
key x P Σc, we define its derived key rhpxq P Σc`d as rx “ rx1 ¨ ¨ ¨ rxc`d, where

rxi “

$
’&
’%

xi if i ă c

xc ‘ rh0prx1 ¨ ¨ ¨ rxc´1q if i “ c
rhi´c prx1 ¨ ¨ ¨ rxi´1q if i ą c.

(1)

We note that each of the d derived characters rxc`1, . . . , rxc`d is progressively defined by applying
a simple tabulation hash function to all its preceding characters in the derived key rx. Hence, the
name tornado tabulation. The step by which we obtain rxc corresponds to the twist from [32]. By
Observation 1.1. in [32], x1 . . . xc ÞÑ rx1 . . . rxc is a permutation, so distinct keys have distinct derived
keys. Finally, we have a simple tabulation hash function ph : Σc`d ÝÑ R, that we apply to the
derived key. The tornado tabulation hash function h : Σc ÝÑ R is then defined as hpxq “ phprxq.

Implementation. The simplicity of tornado tabulation is apparent from its C implementation
below. In the code, we fold tornado’s lookup tables together so we can implement them using c` d
character tables Σ Ñ Σd`1 ˆR. Elements of Σd`1 ˆR are just represented as w-bits numbers. For
memory alignment and ease of implementation, we want w to be a power of two such as 64 or 128.

We now present a C-code implementation of tornado tabulation for 32-bit keys, with Σ “ r28s,
c “ 4, d “ 4, and R “ r224s. Besides the key x, the function takes as input an array of c` d tables
of size |Σ|, all filled with independently drawn 64-bit values.

INT32 Tornado (INT32 x , INT64 [8] [2 5 6] H) {
INT32 i ; INT64 h=0; INT8 c ;
for (i =0; i <3; i++) {

c=x ;
x>>=8;
hˆ=H[i] [c] ; }

hˆ=x ;
for (i =3; i <8; i++) {

c=h ;
h>>=8;
hˆ=H[i] [c] ; }

return ((INT32) h) ; }

3

Speed. As we can see in the above implementation, tornado hashing uses c ` d lookups and
Opc ` dq simple AC0 operations. The speed of tabulation hashing depends on the tables fitting in
fast cache which means that Σ should not be too big. In the above code, we used Σ “ r28s, as in
all previously reported experiments with tabulation hashing. (see [31, 2, 1, 11]).

The speed of tabulation schemes is incomparable to that of polynomial methods using small
space but multiplication. Indeed, the ratio between the cost of cache lookups and multiplication de-
pends on the architecture. In line with previous experiments, we found our tornado implementation
for 32-bit keys to be as fast as a degree-2 polynomial over a Mersenne prime (289 ´ 1) field.

We note that our implementation for the random table H only needs a pointer to an area filled
with “fixed” random bits, and it could conceivably be made much faster if we instead of cache had
access to random bits stored in simple read-only memory (ROM or EPROM).

1.2 Theoretical Results

The main aim of our paper is to prove that, with high probability (whp), a tornado tabulation hash
function is fully random on some set X of keys. The challenge is to characterize for which kinds of
sets we can show such bounds.

Full randomness for fixed keys. We begin with a simpler result that follows directly from our
main technical theorem. In this case, the set X of keys is fixed.

Theorem 1. Let h : Σc Ñ R be a random tornado tabulation hash function with d derived char-
acters. For any fixed X Ď Σc, if |X| ď |Σ|{2, then h is fully random on X with probability at
least

1 ´ 7|X|3p3{|Σ|qd`1 ´ 1{2|Σ|{2 .

With c, d “ Op1q, Theorem 1 gives an Op|Σ|q space hash function that can be evaluated in
constant time and, with high probability, will be fully random for any fixed set X of at most |Σ| {2
keys. This is asymptotically tight as we need |X| random hash values to get this randomness.

The random process behind the error probability that we get will be made clear in the next
paragraph. We note here that, since |X| ď |Σ|{2, we have that 7|X|3p3{|Σ|qd`1 ď 24p3{|Σ|qd´2.
With |Σ| ě 28, the bound is below 1{300 for d “ 4, and decreases rapidly for larger d. For c ě 4, if
we set d “ 2c, we get an error probability below 1{u where u “ |Σ|c is the size of the universe. We
can get error probability 1{uγ for any constant γ with d “ Opcq, justifying this assumption on d.

Linear independence. The general structure of our results is to identify some error event such
that (1) if the event does not occur, then the hash function will be fully random on X, and (2) the
error event itself happens with low probability. The error event that we consider in Theorem 1 is
inherent to all tabulation-based hashing schemes. Namely, consider some set Y of keys from some
universe Σb. We say that Y is linearly independent if and only if, for every subset Y 1 Ď Y , there
exists a character position i P t1, . . . , bu such that some character appears an odd number of times
in position i among the keys in Y 1. A useful connection between this notion and tabulation-based
hashing was shown by Thorup and Zhang [36], who proved that a set of keys is linearly independent
if and only if simple tabulation hashing is fully random on these keys:

Lemma 2 (Simple tabulation on linearly independent keys). Given a set of keys Y Ď Σb and a
simple tabulation hash function h : Σb Ñ R, the following are equivalent:

(i) Y is linearly independent

4

(ii) h is fully random on Y (i.e., h|Y is distributed uniformly over RY).2

To prove Theorem 1, we employ Lemma 2 with sets of derived keys. Namely, given a set of keys

X Ď Σc, we consider the error event that the set rX “
!
rhpxq | x P X

)
of its derived keys is linearly

dependent. We then show that this happens with probability at most 7|X|3p3{|Σ|qd`1 ` 1{2|Σ|{2. If
this doesn’t happen, then the derived keys are linearly independent, and, by Lemma 2, we get that
the tornado tabulation hash function h “ ph ˝ rh is fully random on X since it applies the simple
tabulation hash function ph to the derived keys rX. We note that the general idea of creating linearly
independent lookups to create fully-random hashing goes back at least to [33]. The point of this
paper is to do it in a really efficient way.

Query and selected keys. Our main result, Theorem 5, is a more general version of Theorem 1.
Specifically, while Theorem 1 holds for any fixed set of keys, it requires that |X| ď |Σ| {2. For a
fast implementation, we want |Σ| to be small enough to fit in fast cache, e.g., |Σ| “ 28, but in most
applications, we want to hash a set S of keys that is much larger, e.g., |S| „ |Σ|3. Moreover, we
might be interested in showing full randomness for subsets X of S that are not known in advance:
consider, for instance, the set X of all the keys in S that hash near to hpqq for some fixed key q P S.
In this case, Theorem 1 would not help us, since the set X depends on hpqq hence on h.

To model this kind of scenario, we consider a set of query keys Q Ď Σc and define a set of
selected keys X Ď Σc. Whether a key x is selected or not depends only on x, its own hash value
hpxq, and the hash values of the query keys h|Q (namely, conditioning on hpxq and h|Q makes x P X
and h independent). In Theorem 5, we will show that, if the selected keys are few enough, then
h|X is fully random with high probability.

Formally, we have a selector function f : Σc ˆ R ˆ RQ ÝÑ t0, 1u and we define the set of
selected keys as

Xf,h “ tx P Σc | fpx, hpxq, h|Qq “ 1u .
We make the special requirement that f should always select all the query keys q P Q, that is,
fpq, ¨, ¨q “ 1 regardless of the two last arguments. We then define

µf :“
ÿ

xPΣc

pfx with pfx :“ max
ϕPRQ

Pr
r„UpRq

rfpx, r, ϕq “ 1s . (2)

Here the maximum is taken among all possible assignments of hash values to query keys ϕ : Q Ñ R
and r is distributed uniformly over R. Trivially we have that

Observation 3. If h : Σc Ñ R is fully random then Er|Xf,h|s ď µf .

When f and h are understood, we may omit these superscripts. It is important that X depends
on both f and h while µ only depends on the selector f . We now have the following main technical
theorem:

Theorem 4. Let h “ ph ˝ rh : Σc Ñ R be a random tornado tabulation hash function with d derived
characters and f as described above. If µf ď Σ{2 then the derived selected keys rhpXf,hq are linearly
dependent with probability at most DependenceProbpµf , d,Σ), where

DependenceProbpµ, d,Σq :“ 7µ3p3{|Σ|qd`1 ` 1{2|Σ|{2 .
2In general, we employ the notation h|S to denote the function h restricted to the keys in some set S.

5

Note that Theorem 4 only bounds the probability of the error event. Similarly as in Theorem 1,
we would like to then argue that, if the error event does not happen, we could apply Lemma 2
to claim that the final hash values via the simple tabulation function ph are fully random. The
challenge, however, is the presence of an inherent dependency in how the keys are selected to begin
with, namely that h “ ph ˝ rh is already used to select the keys in Xf,h. In other words, by the time
we want to apply ph to the derived selected keys rhpXf,hq, we have already used some information
about ph in selecting them in Xf,h.

Local uniformity. Nevertheless, there is a general type of selector functions for which we can
employ Theorem 4 in conjunction with Lemma 2 to claim full randomness. Namely, we consider
selector functions that partition the bit representation of the final hash values into s selection bits
and t free bits so that R “ RsˆRt “ r2ssˆr2ts. Given a key x P Σc, we then denote by hpsqpxq P Rs

and hptqpxq P Rt the selection and free bits of hpxq respectively. We then say that a selector function
f is an s-selector if, for all x P Σc, the output of fpx, hpxq, h|Qq only depends on the selection bits
of the hash function, i.e., fpx, hpxq, h|Qq “ fpx, hpsqpxq, hpsq|Qq.

We now crucially exploit the fact that the output bits of a simple tabulation hash function are
completely independent. Formally, we split the simple tabulation ph into two independent simple
tabulation functions: phpsq producing the selection bits and phptq producing the free bits. We then
apply Theorem 4 to hpsq “ phpsq ˝ rh to conclude that the set of selected derived keys rhpXf,hpsq q is
linearly independent with high probability. Assuming this, we then apply Lemma 2 to conclude

that phptq is fully random on rhpXf,phpsq q, hence that hptq “ phptq ˝ rh is fully random on Xf,hpsq
.

Theorem 5. Let h : Σc Ñ R be a tornado tabulation hash function with d derived characters
and f be an s-selector as described above. If µf ď Σ{2, then hptq is fully random on Xf,hpsq

with
probability at least

1 ´ DependenceProbpµf , d,Σq .
While the concept of an s-selector function might seem a bit cryptic, we note that it intuitively

captures the notion of locality that linear probing and other applications depend on. Namely, the
effect of the (high order3) selector bits is to specify a dyadic interval4 of a given length such that all
the keys with hash values falling in that interval are possibly selected (with this selection further
depending, perhaps, on the query keys Q, or on other specific selector bits, leading to more refined
dyadic intervals). Theorem 5 then says that the (low order) free bits of these selected keys will be
fully-random with high probability. In other words, the distribution inside such a neighborhood is
indistinguishable from what we would witness if we had used a fully-random hash function.

As mentioned earlier, the concept of local uniformity stems from [10], except that they did not
consider query keys. Also, they didn’t name the concept. They demonstrated its power in different
streaming algorithms. For those applications, it is important that the selection bits are not known
to the algorithm. They are only set in the analysis based on the concrete input to demonstrate good
performance on this input. The problem in [10] is that their error probability bounds only apply
when the alphabet is so large that the tables do not fit in fast cache. We will describe this issue
closer in Section 1.3. In Section 1.4 we will sketch the use of local uniformity on linear probing
where the locality is relative to a query key.

3Thinking about selector bits as higher order bits helps our intuition. However, they do not have to be higher-order
bits necessarily. More generally, any representation of R as a product Rs ˆ Rt would do the job.

4Recall that a dyadic interval is an interval of the form rj2i, pj ` 1q2iq, where i, j are integers.

6

Upper tail Chernoff bounds. Theorem 5 is only concerned with the distribution of the free
bits of the selected keys, but to employ it in our applications, we often require that the number of
selected keys is not much larger than µf with high probability (see Sections 1.4 and 1.6). We show
that this size can be bounded from above with the usual Chernoff bound when the set of derived
selected keys is linearly independent.

Lemma 6. Let h “ ph ˝ rh : Σc Ñ R be a random tornado tabulation hash function with d derived
characters, query keys Q and selector function f . Let IXf,h denote the event that the set of derived
selected key rhpXf,hq is linearly independent. Then, for any δ ą 0, the set Xf,h of selected keys
satisfies the following:

Pr
”ˇ̌
ˇXf,h

ˇ̌
ˇ ě p1 ` δq ¨ µf ^ IXf,h

ı
ď

ˆ
eδ

p1 ` δq1`δ

˙µf

.

For a nice direct application, consider hash tables with chaining, or throwing n keys into n bins
using tornado hashing. We can select a given bin, or the bin of a given query key. In either case
we have µf “ 1 and then Lemma 6 together with Theorem 4 says that the probability of getting k
keys is bounded by

ek´1{kk ` 7p3{ |Σ|qd`1 ` 1{2|Σ|{2. (3)

If k is not too large, the first term dominates.

Lower bound. Finally, we show that our upper bound for the error probability in Theorem 4 is
tight within a constant factor.

Theorem 7. Let h “ ph ˝ rh : Σc Ñ R be a random tornado tabulation hash function with d derived
characters. There exists a selector function f with µf ď Σ{2 such that the derived selected keys
rhpXf,hq are linearly dependent with probability at least Ωpp3{|Σ|qd´2q.

Full randomness for larger sets of selected keys. As mentioned earlier, for a fast implemen-
tation of tabulation hashing, we pick the alphabet Σ small enough for the tables to fit in fast cache.
A common choice is 8-bit characters. However, we only get full randomness for (selected) sets of
(expected) size at most |Σ| {2 (c.f. Theorems 5 and 1).

To handle larger sets, we prove that it suffices to only increase the alphabet of the last two
derived characters; meaning that only two lookups have to use larger tables. This is close to best
possible in that we trivially need at least one lookup in a table at least as big as the set we want
full randomness over. More precisely, if we use alphabet Ψ for the last two derived characters, then
our size bound increases to |Ψ| {2. The error probability bound of Theorems 5 becomes

14pµf q3p3{|Ψ|q2p3{|Σ|qd´1 ` 1{2|Σ|{2 .

With the above mix of alphabets, we have tornado hashing running in fast cache except for the
last two lookups that could dominate the overall cost, both in time and space. Because they
dominate, we will consider a slight variant, where we do not store derived characters in any of the
two large tables. Essentially this means that we change the definition of the last derived character
from rxc`d “ rhdprx1 ¨ ¨ ¨ rxc`d´1q to rxc`d “ rhdprx1 ¨ ¨ ¨ rxc`d´2q. This is going to cost us a factor two
in the error probability, but in our implementation, we will now have c ` d ´ 2 lookups in tables
Σ Ñ Σd´1 ˆΨ2 ˆR (where the values are represented as a single w-bit numbers), and 2 lookups in
tables Ψ Ñ R. We shall refer to this scheme as tornado-mix. Corresponding to Theorem 5, we get

7

Theorem 8. Let h “ ph ˝ rh : Σc Ñ R be a random tornado-mix tabulation hash function with d
derived characters, the last two from Ψ, and an s-selector function f . If µ “ µf ď |Ψ| {2 then hptq
is fully random on Xf,h with probability at least

1 ´ 14µ3p3{|Ψ|q2p3{|Σ|qd´1 ´ 1{2|Σ|{2 .

An interesting case is when we want linear space uniform hashing for a fixed set X, in which
case µ “ |X| above. This leads to a much better implementation of the uniform hashing fo Pagh
and Pagh [28]. The main part of their paper was to show a linear space implementation, and this
would suffice for all but the most succinct space algorithms. They used highly independent hashing
[33, 35] as a subroutine, but this subroutine alone is orders of magnitude slower than our simple
implementation (see, e.g., [1]). They combined this with a general reduction from succinct space
to linear space, for which we now have a really efficient construction.

1.3 Techniques and relation to mixed tabulation

In spirit, our results are very related to the results on mixed tabulation [10]. For now, we only
consider the case of a single alphabet Σ. Indeed, tornado and mixed tabulation are very similar to
implement. Both deal with c-character keys from some alphabet Σ, produce a derived key with c`d
characters, and then apply a top simple tabulation to the resulting derived keys. Both schemes can
be implemented with c` d lookups. The difference is in how the two schemes compute the derived
keys. For ease of presentation, let rhi : Σ˚ Ñ Σ, that is, rhi adjusts to the number of characters in
the input. Now for mixed tabulation, we define the derived key rx1 ¨ ¨ ¨ rxc`d by

rxi “
#
xi if i ď c
rhi´c prx1 . . . rxcq if i ą c.

The analysis from [10] did not consider query keys, but ignoring this issue, their analysis works in
the limit |Σ| Ñ 8. For example, the analysis from [10] requires that 5

plog |Σ|qc ď |Σ|{2.
This is true for c “ Op1q and |Σ| Ñ 8, but simply false for realistic parameters. Assuming
the above condition to be satisfied, if we consider scenarios with non-constant c and d, the error
probability from [10] becomes

pOpcdqc{|Σ|qtd{2u´1 ` 1{2Ωp|Σ|q.

Now, even if we replace Opcdq with cd, the error probability is not below 1 even with 16-bit
characters and c “ 4. In contrast, practical tabulation schemes normally use 8-bit characters for
efficiency, and our explicit bound of 7µ3p3{|Σ|qd`1 ` 1{2|Σ|{2 from Theorem 4 works fine even in
this case, implying that our theory actually applies to practice.

The reason that mixed tabulation has the problematic exponential dependency on c is that for
a set of linearly dependent keys, it uses a clever encoding of each of the c characters in some of the
keys. With tornado, the only encoding we use is that if we have a zero set of keys, then each key
is the xor of the other keys in the zero set, and this is independent of c. 6

5While using their Lemma 3, if t goes up to s in case D.
6A set is linearly dependent if it contains a subset that is a zero set. See Section 2 for the precise definition.

8

To describe the advantage of tornado tabulation over mixed tabulation, it is easier to first
compare with what we call simple tornado where the derived key rx1 ¨ ¨ ¨ rxc`d is defined by

rxi “
#
xi if i ď c
rhi´c prx1 . . . rxi´1q if i ą c.

The implementation difference is that with simple tornado, each derived character uses all preceding
characters while mixed tabulation uses only the original characters. This difference gives tornado a
big advantage when it comes to breaking up linear dependence in the input keys. Recall that a set
Y Ă Σc`d of derived keys is linearly independent if and only if, for every subset Y 1 Ď Y , there exists
a character position i P t1, . . . , c ` du such that some character appears an odd number of times in
position i among the keys in Y 1. Intuitively, the strategy is to argue that whatever linear dependence
exists in the input key set to begin with (essentially, in the first c characters of the derived keys)
will, whp, be broken down by their d derived characters (and hence, disappear in the derived keys).
In this context, the way we compute the derived characters becomes crucial: in mixed tabulation,
each derived character is computed independently of the other derived characters. Thus, whether
a derived character breaks a dependency or not is independent of what other derived characters
do. In contrast, we make the derived characters in tornado tabulation depend on all previously
computed derived characters such that, if we know that some derived character does not break
a dependency, then we also know that none of its previously computed derived characters have
broken it either. Or, in other words, each successive tornado-derived character benefits from the
dependencies already broken by previously computed derived characters, i.e., the benefits compound
each time we compute a new derived character.

This structural dependence between tornado-derived characters turns out to be very powerful
in breaking linear dependencies among the input keys and indeed, leads to a much cleaner analysis.
The most important benefit, however, is that tornado tabulation has a much lower error probability.
For simple tornado, we get an error probability of

7pµf q3p3{|Σ|qd ` 1{2|Σ|{2 ,

which essentially gains a factor p3{|Σ|q for each derived character. It turns out that we gain an extra
factor p3{|Σ|q if we twist the last original character as we did in the original tornado definition (1),
and then we get the bound from Theorem 5, the point being that this twisting does not increase
the number of lookups.

One might wonder if twisting more characters would help further, that is, setting rxi “ xi ‘
rhiprx1 ¨ ¨ ¨ xi´1q for i “ 2, . . . , c, but it doesn’t. The point is that the bad key set from our lower
bound in Theorem 7 is of the form r0sc´2 ˆ r2s ˆ A for some A Ď Σ, and then it is only the last
character where twisting makes a difference.

As a last point, recall tornado-mix which was designed to deal with larger sets. There it only
costs us a factor 2 when we let the last derived character rxc`d depend only on rx1 . . . rxc`d´2 and
not on rxc`d´1. This is essentially like switching to mixed tabulation on the last two derived keys,
hence the name tornado-mix. This only works for the last two derived characters that can play a
symmetric role.

The exponential dependence on c. We note that having an exponential dependence on c is
symptomatic for almost all prior work on tabulation hashing, starting from the original work in
[31]. Above, we discussed how tornado tabulation hashing avoided such exponential dependence on

9

c in the error probability from mixed tabulation. The dependence on c was particularly destructive
for mixed tabulation because it pushed the error probability above 1 for the relevant parameters.

Concentration bounds. Tornado hashing inherits the strongest concentration bounds known
for mixed tabulation [22]. The reason is that they only require one derived character and tornado
tabulation can be seen as applying mixed tabulation with one character to a derived tornado key
with one less character. Unlike our Lemma 6, which essentially only applies for expected values
µ ď |Σ| {2, the concentration bounds we get from [22] work for unbounded µ and for both the upper
and lower tail. They fall exponentially in µ{Kc where Kc is exponential in c, but this still yields
strong bounds when µ is large. Inheriting the strongest concentration bound for mixed tabulation
implies that tornado tabulation can replace mixed tabulation in all the applications from [10] while
improving on the issue of local uniformity.

1.4 The power of locally uniform hashing

We now describe, on a high level, how the notion of locally uniform hashing captures a type
of randomness that is sufficient for many applications to work almost as if they employed full
randomness. For the discussion, we will assume the parameters from Theorem 8 with tornado-mix.
The main observation is that, for many algorithms, the performance measure (i.e., its distribution)
depends, whp, only on the behavior of keys that hash inside a local neighborhood defined via some
selected bits of the hash value (the selection may depend both on the algorithm and on the concrete
input since the selection is only used for analysis). Moreover, the set of keys Xf,h that land in that
selected neighborhood has expected size ď |Ψ| {2. For any such neighborhood, our results imply
that the keys in Xf,h have fully random free bits whp.

To understand the role of the free bits, it is helpful to think of hashing a key x as a two-stage
process: the selector bits of hpxq tell us whether x hashes in the desired neighborhood or not,
while the remaining free bits of hpxq determine how x hashes once it is inside the neighborhood.
This suggests a general coupling, where we let both fully-random hashing and tornado tabulation
hashing first choose the select bits and then the free bits. Since both are fully random on the free
bits (for us with high probability), the only difference is in the selection, but here concentration
bounds imply that we select almost the same number of keys as fully-random hashing.

In [10], this approach was demonstrated for the HyperLogLog algorithm of Flajolet, Fusy,
Gandouet, Meunier [18] for counting distinct elements in data streams, and the One-Permutation
Hashing of Li, Owen, and Zhang [26] used for fast set similarity in large scale machine learning.
In [10] they implemented the local uniformity with mixed tabulation, but with tornado hashing
we get a realistic implementation. This also includes later application of mixed tabulation, e.g.,
the dynamic load balancing from [3]. Below, as a new example, we illustrate how local uniformity
makes classic linear probing perform almost as if fully random hashing was used.

We briefly recall the basic version of linear probing. We employ an array T of length m and
hash keys to array entries using a tornado tabulation hash function h : Σc Ñ rms. Thus, in
Theorem 8, we have R “ rms “ r2rs. Upon insertion of a key x, we first check if entry T rhpqqs
is empty. If it is, we insert the key in T rhpqqs. Otherwise, we scan positions in T sequentially
starting with T rhpqq ` 1s until we find an empty position and store x in this next available free
entry. To search for x, we inspect array entries sequentially starting with T rhpqqs until we find x
or we find an empty array entry, concluding that the key is not in the array. The general concept
that dominates the performance of linear probing is the run of q, which is defined as the longest

10

interval Iq Ď rms of full (consecutive) array entries that hpqq is part of. The run affects the probe
length (the length of the interval from hpqq till the end of Iq) and other monotone measures such
as insertion and deletion time (i.e., monotonically increasing in the number of keys). Thus, any
corresponding analysis depends only on the set Xq of keys that fall in the interval Iq, and it is there
that we are interested in showing full randomness.

The first step is to argue that the behavior of Iq is local in nature, in that it is affected only by the
keys that hash in a fixed length interval around hpqq. To that end, we show that, whp, the length of
the run is no bigger than a specific ∆ “ 2ℓ. This ∆ implies locality: consider the interval Jq Ď rms,
centered at hpqq, which extends ∆ entries in each direction, i.e., Jq “ tj P rms | |j ´ hpqq| ď ∆u.
Then, whp, any run that starts outside Jq is guaranteed to end by the time we start the run of q.
In other words, whp, the behavior of Iq depends only on the set Xq of keys that hash inside the
fixed length neighborhood Jq (and specifically where in Jq the keys hash). A similar argument can
be made for other variants of linear probing, such as linear probing with tombstones [6], where the
run/neighborhood must also take into account the tombstones that have been inserted.

At this point, it is worthwhile pointing out that the set Xq is no longer a fixed set of keys but
rather a random variable that depends on the realization of hpqq. We cannot just apply Theorem 1.
Nevertheless, in the second step, we argue that Xq can be captured by our notion of selector
functions. For this, we cover Jq with three dyadic intervals, each of length ∆: one including hpqq
and the corresponding ones to the left and to the right. Since each interval is dyadic, it is determined
only by the leftmost r ´ ℓ bits of the hash value: for example, an element x P Σc hashes into the
same dyadic interval as q iff the leftmost r´ ℓ bits of hpxq match those of hpqq. We can then design
a selector function that returns a 1 if and only if x is in the input set and the leftmost r ´ ℓ bits of
hpxq (its selector bits) hash it into any of the three specific dyadic intervals we care about. Such
a selector function is guaranteed to select all the keys in Xq. By setting ∆ appropriately, we get
that the expected size of the selected set is at most Σ{2, and can thus apply Theorem 5. We get
that inside the intervals, keys from Xf,h hash (based on their free bits) in a fully random fashion.

Finally, what is left to argue is that the number of keys hashing inside each of the three dyadic
intervals is not much bigger than what we would get if we used a fully-random hash function for
the entire set (one in which the selector bits are also fully random). For this, we employ Lemma 6,
and can conclude that we perform almost as well with fully-random hashing. In particular, from
Knuth’s [25] analysis of linear probing with fully-random hashing, we conclude that with load
p1 ´ εq, the expected probe length with tornado hashing is p1 ` op1qqp1 ` 1{ε2q{2.

The above type of analysis could be applied to other variants of linear probing, e.g., including
lazy deletions and tombstones as in the recent work of Bender, Kuszmaul, and Kuszmaul [6]. We
would need to argue that the run, including tombstones, remains within the selected neighborhood
and that we have concentration both on live keys and tombstones. However, since the analysis
from [6] is already based on simple hash functions, we would not get new bounds from knowing
that tornado hashing performs almost as well as fully-random hashing.

1.5 Relation to high independence

The k-independence approach to hashing [37] is to construct hash functions that map every set of
k keys independently and uniformly at random. This is much stronger than getting fully random
hashing for a given set and, not surprisingly, the results for highly independent hashing [9, 33, 35]
are weaker. The strongest high independence result from [9] says that we get |Σ|1´ε-independent
hashing in Oppc{εq logpc{εqq time, but the independence is much less than our |Σ|{2. Experiments

11

from [1] found that even the simpler non-recursive highly independent hashing from [35] was more
than an order of magnitude slower than mixed tabulation which is similar to our tornado tabulation.

We also note that the whole idea of using derived characters to get linear independence between
keys came from attempts to get higher k-independence Indeed, [15, 23, 36] derive their characters
deterministically, guaranteeing that we get k-independence. The construction for k “ 5 is efficient
but for larger k, the best deterministic construction is that from [36] using d “ pk ´ 1qpc ´ 1q ` 1
derived characters, which for larger k is much worse than the randomized constructions.

1.6 Relation to the splitting trick and to succinct uniform hashing

We will now describe how tornado-mix provides a much more efficient implementation of the suc-
cinct uniform hashing by Pagh and Pagh [28] and the splitting trick of Dietzfelbinger and Rink [13].
This further illustrates how our work provides a component of wide applicability within hashing.

Succinct uniform hashing. The main contribution in [28] is to obtain uniform hashing in linear
space. The succinct construction is then obtained through a general reduction from the linear-space
case. They achieved uniform hashing in linear space using the highly independent hashing of Siegel
[33] as a subroutine in combination with other ideas. Now, thanks to Theorem 8, we know that
tornado-mix offers an extremely simple and efficient alternative to implement that. Indeed, if n is
the size of the set we want linear space uniform hashing on, then setting |Ψ| to the power of two
just above 2n is sufficient to ensure the degree of independence that we need. Moreover, we can set
|Σ| „ ?

Ψ and c so that we obtain (i) c|Σ| “ op|Ψ|q and (ii) setting d “ 2c`1 the probability bound
in Theorem 8 becomes 1´Op1{uq where u is the size of the universe. The two previous conditions
ensure respectively that tornado-mix uses linear space and that it is, whp, fully random.

The splitting trick. We now explain how our tornado-mix tabulation hashing provides a very
simple and efficient implementation of the splitting trick of Dietzfelbinger and Rink [13] which is
a popular method for simulating full-randomness in the context of data structures, most notably
various dictionary constructions [14, 16, 19, 5]. This is an especially relevant application because it
usually requires hashing keys into a range of size Θpnq and, in this context, employing the uniform
hashing of Pagh and Pagh [28] would be too costly, i.e., (compared to the size of the overall data
structure). This trick was also used to obtain a simpler and exponentially faster implementation
of succinct uniform hashing [28]. We note that the splitting idea had also been used earlier works
of Dietzfelbinger and Meyer auf der Heide [12] and Dietzfelbinger and Woelfel [15].

The idea is to first split the input set S of size n into n1´δ subsets S1, . . . , Sm, for some δ P p0, 1q.
The splitting is done through a hash function h1 : Σc Ñ rn1´δs such that Si is defined as all the
keys in S that hash to the same value, i.e., Si “ tx P S | h1pxq “ iu. In many applications, we want
the splitting to be balanced, that is, we need a joint upper bound s on all set sizes with s close to
the expected size nδ. On top of this, we need a shared hash function h2 : Σ

c Ñ R which with high
probability is fully random on each set Si and we ensure this with a hash function that w.h.p. is
fully random on any set of size at most s. The problem is then solved separately for each subset
(e.g., building n1´δ dictionaries, each responsible for just one subset Si).

The above splitting trick can be easily done with tornado-mix hashing from Theorem 8. The
dominant cost for larger s is two lookups in tables of size at most 4s. We let h1 be the select bits
(with the strong concentration from Lemma 6) and h2 as the remaining free bits. Getting both for
the price of one is nice, but the most important thing is that we get an efficient implementation of
the shared hash function h2. Specifically, we compare this with how h1 and h2 were implemented

12

in [13] to get uniform hashing. For the splitter h1, instead of using Siegel’s [33] highly independent
hashing, [13, §3.1] uses that if h1 has sufficiently high, but constant, independence, then it offers
good concentration (though not as good as ours from Lemma 6).

The bigger issue is in the implementation of the shared h2 from [13, §3.2]. For this, they first
employ a hash function f : rss Ñ rs1`εs such that, whp, f has at most k “ Op1q keys that get the
same hash value. For small ε and k, this forces a high independence of f . Next, for every i P rs1`εs,
they use a k-independent hash function gi : Σ

c Ñ R, and finally, h2 is implemented as gfpxqpxq.
The space to implement h2 is dominated by the Ops1`εq space to store the s1`ε k-independent hash
functions gi, and time-wise, we have to run several sufficiently independent hash functions. This
should be compared with our tornado-mix that only uses Opsq space and runs in time corresponding
to a few multiplications (in tests with 32-bit keys).

1.7 Paper Organization

The remainder of our paper is structured as follows. In Section 2, we introduce some notation, a
more general notion of generalized keys and Lemma 9 (the corresponding version of Lemma 2 for
them). Our main technical result, Theorem 4, is proved in three steps: we first define obstructions,
the main combinatorial objects we study, in Section 3. In Section 4 we present a simplified analysis
of Theorem 4 that achieves a weaker error probability. We then show in Section 5 a tighter
analysis that finally achieves the desired bound. The Chernoff bounds for the upper tail are proved
in Section 6. The details for the linear probing analysis can be found in Section 7. Finally, the
lower bound from Theorem 7 is proved in Section 8.

2 Preliminaries

Notation. We use the notation n!! “ npn ´ 2q ¨ ¨ ¨ . More precisely, n!! “ 1 for n P t0, 1u, while
n!! “ npn ´ 2q!! for n ą 1. For odd n, this is exactly the number of perfect matchings of n ` 1
nodes. We use the notations

nk “ npn ´ 1q ¨ ¨ ¨ pn ` 1 ´ kq “ n!{pn ´ kq!
nk “ npn ´ 2q ¨ ¨ ¨ pn ` 2p1 ´ kqq “ n!!{pn ´ 2kq!

Here nk appears to be non-standard, though it will be very useful in this paper in connection with
something we will call greedy matchings. We note that

nk ď nk ď nk.

Position characters and generalized keys. We employ a simple generalization of keys going
back to Pǎtraşcu and Thorup [31]. Namely, a position character is an element of t1 . . . bu ˆ Σ,
e.g., where b “ c or c ` d. Under this definition a key x P Σb can be viewed as a set of b position
characters p1, x1q . . . pb, xbq, and, in general, we consider generalized keys that may be arbitrary
subsets of t1 . . . bu ˆ Σ. A natural example of a generalized key is the symmetric difference x△y of
two (regular) keys. We then have that

hpxq “ hpyq ðñ hpx△yq “ 0.

13

These symmetric differences will play an important role in our constructions, and we shall refer to
x△y as a diff-key. A diff-key is thus a generalized key where we have zero or two characters in each
position. For a generalized key x, we can then define

xris “ tpi, aq P xu, xră is “ tpj, aq P x | j ă iu and xrď is “ tpj, aq P x | j ď iu.
For example, if we have a regular key x “ x1, . . . , xc, then xris “ xi and xrď is “ x1 . . . , xi. Also
note that px△yqrď is “ xrď is△yrď is. We shall also apply this indexing to sets X of generalized
keys by applying it to each key individually, e.g.,

Xră is “ txră is | x P Xu.

Generalized keys and linear independence. A generalized key x can also be interpreted as
a p|Σ| ¨ bq-dimensional vector over F2, where the only entries set to 1 are those indexed by position

characters in x. The generalized key domain is denoted by Ft1...buˆΣ
2 . Now, if we have a simple

tabulation hash function h : Σb Ñ R using character tables T1, . . . , Tb, then h can be lifted to hash

any generalized key x P Ft1...buˆΣ
2 by

hpxq “ à

pi,aqPx
Tiras.

Thus h provides a mapping Ft1...buˆΣ
2 to R.

As for (regular) keys, for a set Y of generalized keys, we can then define △Y to be the set of
position characters that appear an odd number of times across the keys in Y . We then say that Y
is a zero-set if △Y “ H. We also say that Y is linearly dependent if it contains a subset which
is a zero-set, and linearly independent otherwise. It is apparent then that a set of generalized keys
is linearly independent if and only if the set of their vector representations is linearly independent.
Indeed, the proof of Thorup and Zhang [36] for Lemma 9 works quite directly in this generality.
Thus we have

Lemma 9 (Simple tabulation on linearly independent generalised keys). Given a set of general-

ized keys Y Ď
´
Ft1...cuˆΣ
2

¯
and a simple tabulation hash function h : Σc Ñ R, the following are

equivalent:

(i) Y is linearly independent

(ii) h is fully random on Y (i.e., h|Y is distributed uniformly over RY).

3 Obstructions with simple tornado tabulation

We prove Theorem 4 by first considering a simpler version of tornado tabulation hashing, which
we call simple tornado hashing, where we do not change the last character of the (original) key.
Formally, for a key x “ x1 ¨ ¨ ¨ xc, its corresponding derived key rx “ rx1 . . . rxc`d is computed as

rxi “
#
xi if i “ 1, . . . , c
rhi´c prx1 . . . rxi´1q otherwise.

14

Note that, in the original tornado hashing, we had rxc “ xc ‘ rh0prx1 . . . rxc´1q. Removing this extra
step is thus equivalent to fixing rh0p¨q “ 0. While this step comes at almost no cost in the code, it
allows us to gain a factor of 3{ |Σ| in the overall error probability. See Section 5.3 for details. For
the simple tornado hashing, we will prove a slightly weaker probability bound.

For ease of notation, for every key x, we use rx to denote the corresponding derived key rhpxq; and
likewise for any set of keys. We also define X “ Xf,h to be the set of selected keys and rX “ h̃pXq.
We want to argue that the derived selected keys rX are linearly independent with high probability.
To prove this, we assume that rX is linearly dependent and hence, contains some zero-set rZ. From
rZ we construct a certain type of “obstruction” that we show is unlikely to occur.

3.1 Levels and matchings

We first define some necessary concepts. We use the notion of level i to refer to position c ` i in
the derived keys. Let M Ď `|Σ|c

2

˘
be a (partial) matching on the keys Σc.7 We say that M is an

i-matching if for all tx, yu P M , it holds that rxrc ` is “ ryrc ` is, namely if every pair of keys in M
matches on level i. Our obstruction will, among other things, contain an i-matching Mi for each
level i.

Recall that a diff-key x△y is the symmetric difference of two keys x and y in terms of their
position characters. We then say that M is an i-zero, i-dependent, or i-independent matching if

DiffKeyspM, iq “ tprx△ ryqrď c ` is | tx, yu P Mu
is a zero-set, linearly dependent, or linearly independent, respectively. In other words, for each
pair tx, yu in the matching, we consider the diff-key corresponding to the first c ` i characters of
their derived keys. We then ask if this set of diff-keys now forms a zero-set or contains one as a
subset, by looking at their (collective) symmetric difference. We employ this notion to derive the
probability that the function rh satisfies a certain matching as such:

Lemma 10. Let M be a partial matching on Σc. Conditioning on M being pi ´ 1q-independent,
M is an i-matching with probability 1{|Σ||M |.

Proof. First, we notice that the event “M is pi ´ 1q-independent” only depends on rhj for j ă i.

Then, by Lemma 9, when we apply the simple tabulation hash function rhi : Σc`i Ñ Σ to the
linearly independent generalized key set DiffKeyspM, i ´ 1q, the resulting hash values rhpzqrc ` is
for z P DiffKeyspM, i´ 1q are independent and uniform over Σ. Hence, so are the resulting derived
characters rhpzqrc ` is for z P DiffKeyspM, iq. The probability that they are all 0 is therefore
1{|Σ||M |.

Similarly, as for matchings, we say that a set of keys Z Ď Σc is i-zero, i-dependent, or i-
independent if rZrď c ` is is a zero-set, linearly dependent, or linearly independent, respectively.
We note the following relations:

Observation 11. LetM be a partial matching on Σc and Z “ Ť
M . ThenM is an i-zero matching

iff Z is an i-zero set. Furthermore, if M is i-dependent then Z is also i-dependent (but not vice
versa).

7Here, we mean the graph-theoretic definition of a matching as a set of edges with disjoint endpoints. In our
case, the vertices of the graph are keys in Σc, and the edges of the matching are represented as tx, yu P M .

15

We will also make use of the following observation repeatedly:

Observation 12. If Z is an i-zero set, then there is a perfect j-matching on Z for every level j ď i.

3.2 Constructing an obstruction

In this section, we show that whenever the set of selected derived keys rX is linearly dependent, it
gives rise to a certain obstruction. We now show how to construct such an obstruction.

Since rX is linearly dependent, there must be some d-zero set Z Ď X. We are going to pick a
d-zero set that (1) minimizes the number of elements contained that are not in the query set Q
and, subject to (1), (2) minimizes the number of elements from Q contained. In particular, Z is
contained in Q if rQ is not linearly independent.

If Z is not contained in Q, we let x˚ be any element from ZzQ. Then Q Y Zztx˚u must be
linearly independent since any strict subset Z 1 would contradict (1). If Z is contained in Q, then
we let x˚ be an arbitrary element of Z.

The top two levels. By Observation 12, we have a perfect d-matching Md̊ and a perfect pd´1q-
matching Md̊´1 on Z (we also have perfect matchings on other levels, but they will be treated
later). These two perfect matchings partition Z into alternating cycles.

We will now traverse these cycles in an arbitrary order except that we traverse the cycle con-
taining x˚ last. For all but the last cycle, we start in an arbitrary vertex and its cycle starting with
the edge from Md̊´1. When we get to the last cycle, we start at the Md̊ neighbor of x˚ and follow
the cycle from the Md̊´1 neighbor of this key. This ensures that x˚ will be the very last vertex
visited. The result is a traversal sequence x1, . . . , x|Z| of the vertices in Z ending in x|Z| “ x˚. Note
that Md̊´1 contains the pairs tx1, x2u, tx3, x4u, For Md̊ it is a bit more complicated, since its
pairs may be used to complete a cycle (and hence are not visible in the traversal).

We now define W “ tx1 . . . xwu to be the shortest prefix of x1 . . . x|Z| such that Md̊´1 restricted
to the keys in W is a pd´1q-dependent matching, i.e., we go through the pairs tx1, x2u , tx3, x4u , . . .
until the set of their diff-keys (up to level d ´ 1) contains a zero-set. Note that such a W Ď Z
always exists because Md̊´1 itself is a pd´1q-zero matching. Also note that W ztxwu Ď Zztx˚u. Let
ed´1 :“ txw´1, xwu be the last pair in the prefix, and as ed´1 P Md̊´1, we get that w is even. We then
define Md´1 to be the restriction of Md̊´1 to the keys in W and Md to be the restriction of Md̊ to
the keys in W z txwu. Note that Md´1 is a perfect matching on W while Md is a maximal matching
on W ztxwu. Since Md´1 is pd´1q-dependent, we can define a submatching Ld´1 Ď Md´1 such that
Ld´1 is a pd ´ 1q-zero matching (this corresponds exactly to the subset of DiffKeyspMd´1, d ´ 1q
that is a zero-set). By construction, ed´1 P Ld´1. Finally, we set Zd´1 “ Ť

Ld´1 and notice that
Zd´1 is an pd ´ 1q-zero key set (by Observation 11).

A special total order. We now define a special new total order ĺ on Σc that we use in order to
index the keys in W and describe matchings on levels ă d ´ 1. Here xw has a special role and we
place it in a special position; namely at the end. More precisely, we have the natural ď-order on Σc,
i.e, in which keys are viewed as numbers ă |Σ|c. We define ĺ to be exactly as ď except that we set
xw to be the largest element. Moreover, we extend the total order ĺ to disjoint edges in a matching
M : given tx1, x2u, ty1, y2u P M , we define tx1, x2u ĺ ty1, y2u if and only if minxi ă mini yi.

16

Lower levels. Now for i “ d´2 . . . 0, we do the following: from level i`1, we have an pi`1q-zero
set Zi`1. By Observation 12, there exists a perfect i-matching Mi̊ over Zi`1. Notice that Mi̊ is an
i-zero matching. We define Mi as the shortest prefix (according to ĺ) of Mi̊ that is i-dependent.
Denote by ei the ĺ-maximum edge in Mi. Define the submatching Li Ď Mi such that Li is an
i-zero set. By construction, ei P Li. Finally, we set Zi “ Ť

Li and notice that Zi is an i-zero set.

3.3 Characterizing an obstruction

Our main proof strategy will be to show that an obstruction is unlikely to happen, implying that
our selected derived keys rX are unlikely to be linearly dependent. To get to that point, we first
characterize such an obstruction in a way that is independent of how it was derived in Section 3.2.
With this classification in hand, we will then be able to make a union bound over all possible
obstructions.

Corresponding to the two top levels, our obstruction consists of the following objects:

• A set of keys W Ď Σc of some size w “ |W |.
• A special key xw P W , that we put last when we define ĺ.

• A maximal matching Md on W ztxwu.
• A perfect matching Md´1 on W , where ed´1 is the only edge in Md´1 incident to xw.

• A submatching Ld´1 Ď Md´1, which includes ed´1, and its support Zd´1 “ Ť
Ld´1.

Note that the above objects do not include the whole selected set Xf,h, the d-zero set Z, or the
perfect matchings Md̊´1,Md̊ that we used in our construction of the obstruction. Also, note that
thus far, the objects have not mentioned any relation to the hash function h.

To describe the lower levels, we need to define greedy matchings. We say a matching M on a
set Y is greedy with respect to the total order ĺ on Y if either: (i) M “ H or; (ii) the key minĺ Y
is incident to some e P M and Mzteu is greedy on Y ze. Assuming that |Y | is even, we note that
M is greedy if and only if it is a prefix of some ĺ-ordered perfect matching M˚ on Y .

For the lower levels i “ d ´ 2, . . . , 1, we then have the following objects:

• A greedy matching Mi on Zi`1. Denote with ei the ĺ-maximum edge in Mi.

• A submatching Li Ď Mi which includes ei, and its support Zi “ Ť
Li.

Note that the above objects describe all possible obstructions that we might construct. More-
over, any obstruction can be uniquely described as the tuple of objects

pW,xw,Md,Md´1, ed´1, Ld´1, Zd´1, . . .M1, e1, L1, Z1q .

3.4 Confirming an obstruction

In order for a given obstruction to actually occur, the tornado tabulation hash function h “ ph ˝ rh
must satisfy the following conditions with respect to it:

• The keys in W are all selected, that is, W Ď Xf,h.

17

• Either W Ď Q or Q Y W ztxwu is d-independent.

• For i “ 1, . . . , d, Mi is an i-matching.

• Md is pd ´ 1q-independent.
For i “ 1, . . . , d ´ 1,

• Mizteiu is pi ´ 1q-independent.
• The submatching Li is i-zero (implying that Zi “ Ť

Li is an i-zero set).

When a hash function h satisfies the above conditions, we say that it confirms an obstruction.
We now need to argue two things. We need (1) to verify that our construction of an obstruction
from Section 3.2 satisfies these conditions on h, and (2) that, given a fixed obstruction, the proba-
bility that a random h confirms the obstruction is very small. This is captured by the two lemmas
below.

Lemma 13. The obstruction constructed in Section 3.2 satisfies the conditions on h “ ph ˝ rh.
Proof. Since W ztxwu Ď Zztx˚u, the choice of Z implies that either W Ď Q or Q Y W ztxwu is
d-independent.

The matchings Mi were all submatchings of perfect i-matchings. We also picked Mi is minimally
i-dependent, but for an i-matching Mi this also implies that Mi is minimally pi ´ 1q-dependent,
and therefore Mizteiu is pi ´ 1q-independent. Finally, we constructed Li and Zi to be i-zero.

Lemma 14. Given the objects of an obstruction, the probability that h “ ph ˝ rh confirms the
obstruction is at most ¨

˝ ź

xPW ztxwu
px

˛
‚
N

|Σ|w´2`řd´2
i“1 p|Mi|´1q.

Proof. For simplicity, we group the conditions above in the following events: we define the event
CS to be the event that W ztxwu Ď Xf,h given that the set W ztxwu is d-independent. Then, for
each i P t1, . . . , d ´ 1u, we define Cpiq to be the event that Mizei is an i-matching conditioned on
the fact that it is pi ´ 1q-independent. Finally, we define the last event Cpdq to be the event that
Md is a d-matching conditioned on the fact that it is pd ´ 1q-independent. It is then sufficient to
show that:

Pr

˜
CS ^

dľ

i“1

Cpiq
¸

ď
¨
˝ ź

xPW ztxwu
px

˛
‚
N

|Σ|w´2`řd´2
i“1 p|Mi|´1q.

We proceed from the bottom up, in the following sense. For every i P t1, . . . , d ´ 1u, the
randomness of the event Cpiq conditioned on

Źi´1
j“1 Cpjq depends solely on rhi. We invoke Lemma 10

for Mizei and get that

Pr

˜
Cpiq

ˇ̌
ˇ

i´1ľ

j“1

Cpjq
¸

ď 1{ |Σ||Mi|´1 .

18

When it comes to level d, from Lemma 10 applied to Md, we get that the probability of Cpdq
conditioned on

Źd´1
j“1 Cpjq is at most 1{ |Σ||Md|. We now notice that |Md´1| ` |Md| “ w ´ 1 by

construction, and so:

Pr

˜
dľ

j“1

Cpjq
¸

ď 1{ |Σ|w´2`řd´2
i“1 p|Mi|´1q .

Finally, we know that either W Ď Q or Q Y W ztxwu is d-independent. If W Ď Q, then px “ 1
for all x P W , and therefore, trivially,

Pr

˜
CS

ˇ̌
ˇ

dľ

j“1

Cpjq
¸

ď
ź

xPW ztxwu
px “ 1 .

Otherwise Q Y W ztxwu is d-independent. This means that the derived keys rhpQ Y W ztxwuq
are linearly independent. We can then apply Lemma 9 to this set of derived keys and the final
simple tabulation hash function ph. We get that the final hash values hpQ Y W ztxwuq are chosen
independently and uniformly at random. For any one element x, by definition, Pr

`
x P Xf,h

˘ ď px
and so:

Pr

˜
CS

ˇ̌
ˇ

dľ

j“1

Cpjq
¸

ď
ź

xPW ztxwu
px .

This completes the claim.

4 Simplified analysis

In this section, we present a simplified analysis showing that, under the hypotheses of our theorem,
rhpXf,hq is linearly dependent with probability at most Θpµ3p17{|Σ|qdq ` 2´|Σ|{8. Later, we will
replace p17{|Σ|qd with p3{|Σ|qd, which essentially matches the growth in our lower bound.

For now we use a fixed limit w0 “ |Σ|{25{2 on the set size w “ |W |. With this limited set size,
we will derive the Θpµ3p17{|Σ|qdq bound. The 2´|Σ|{8 bound will stem for sets of bigger size and
will be derived in a quite different way.

Our goal is to study the probability that there exists a combinatorial obstruction agreeing with
a random tornado hash function h; if not, rhpXf,hq is linearly independent. To do this, we consider
a union bound over all combinatorial obstructions as such:

ÿ

W,xw,Md,Md´1,ed´1,Ld´1,Zd´1,...M1,e1,L1,Z1

Pr
h

rh confirms the obstructions (4)

The above sum is informally written in that we assume that each element respects the previous
elements of the obstruction, e.g., for i ă d´ 2, Mi is a greedy matching over Zi`1. Likewise, in the
probability term, it is understood that h is supposed to confirm the obstruction whose combinatorial
description is pW,xw,Md,Md´1, ed´1, Ld´1, Zd´1, . . .M1, e1, L1, Z1q .

19

Using Lemma 14, we bound (4) by

ÿ

W,xw,Md,Md´1,ed´1,Ld´1,Zd´1,...M1,e1,L1,Z1

¨
˝ ź

xPW ztxwu
px

˛
‚
N

|Σ|w´2`řd´2
i“1 p|Mi|´1q

ď
¨
˝ ÿ

W,xw,Md,Md´1,ed´1,Ld´1,Zd´1

¨
˝ ź

xPW ztxwu
px

˛
‚|Σ|2´w2w{4´1

˛
‚ (5)

ˆ
d´2ź

i“1

max
Zi`1

˜ ÿ

Mi,ei,Li,Zi

|Σ|1´|Mi|
N

2p|Zi`1|´|Zi|q{4
¸
. (6)

Above , W,xw,Md,Md´1, ed´1, Ld´1, Zd´1 are all the elements from the top two levels and we refer
to (5) as the “top” factor. We refer to Equation (6) as the “bottom” factor which is the product
of “level” factors.

For each lower level i ď d ´ 2, the elements Mi, ei, Li, Zi are only limited by Zi`1, so for a
uniform bound, we just consider the maximizing choice of Zi`1. For this to be meaningful, we
divided the level factor (6) by 2p|Zi`1|´|Zi|q{4 and multiplied (5) by 2w{4´1 ě śd´2

i“1 2p|Zi`1|´|Zi|q{4.
This inequality follows because |Zd´1| ď w and |Z1| ě 4. The exponential decrease in |Zi`1| helps
ensuring that the maximizing choice of Zi`1 has bounded size (and is not infinite). We note here
that our bound |W | ď w0 “ |Σ|{25{2 is only needed when bounding the level factors, where it
implies that |Zi`1| ď w0.

4.1 The top two levels and special indexing for matchings and zero sets

We now wish to bound the top factor (5) from the two top levels. Below, we will first consider w
fixed. Later we will sum over all relevant values of w.

We want to specify the w keys in W using the fact that the keys from W ztxwu hash indepen-
dently. Thus, we claim that we only have to specify the set V “ W ztxwu, getting xw for free. By
construction, we have xw in the zero-set Zd´1, so

xw “ △pZd´1ztxwuq. (7)

To benefit from this zero-set equality, we need the special ordering ĺ from the construction. It
uses the standard ordering ď of V since all these keys are known, and then it just places the yet
unknown key xw last. The special ordering yields and indexing x1 ă x2 ă ¨ ¨ ¨ ă xw (this is not
the order in which we traversed the cycles in the construction except that xw is last in W in both
cases). Formally, we can now specify all the Mi, Li, Zi over the index set t1, . . . , wu. For i ă w, we
directly identify xi as the ith element in V . This way we identify all xi P Zd´1ztxwu, and then we
can finally compute the special last key xw; meaning that we completely resolve the correspondance
between indices and keys in W . As a result, we can bound (5) by

ÿ

V :|V |“w´1

˜ź

xPV
px

¸
ˆ

ÿ

Md,Md´1,ed´1,Ld´1,Zd´1

|Σ|2´w2w{4´1.

For the first part, with v “ w ´ 1, we have

ÿ

V : |V |“v

˜ź

xPV
px

¸
“ 1

v!

ÿ

px1,...,xvq

vź

i“1

pxi ď 1

v!

vź

i“1

p
ÿ

x

pxq “ µv

v!
. (8)

20

For the second part, we note Md´1 and Md can both be chosen in pw´ 1q!! ways and we know that
ed´1 is the edge in Md´1 incident to w. Since the submatching Ld´1 of Md´1 contains the known
ed´1, it can be chosen in at most 2|Md´1|´1 “ 2w{2´1 ways. Putting this together, we bound (5) by

µw´1

pw ´ 1q! ppw ´ 1q!!q2 2w{2´1|Σ|´w`22w{4´1 “ µw´1

|Σ|w´2
¨ pw ´ 1q!!

pw ´ 2q!! ¨ 23w{4´2

ď µ3

|Σ|2 2
4´w ¨ pw ´ 1q!!

pw ´ 2q!! ¨ 23w{4´2 “ µ3

|Σ|2 ¨ pw ´ 1q!!
pw ´ 2q!! ¨ 22´w{4 (9)

Above we got to the second line using our assumption that µ ď |Σ|{2. This covers our top factor
(5), including specifying the set Zd´1 that we need for lower levels.

Union bound over all relevant sizes. We will now sum our bound (9) for a fixed set size w
over all relevant set sizes w ď w0, that is, w “ 4, 6, . . . , w0. The factor that depends on w is

fpwq “ pw ´ 1q!!
pw ´ 2q!!{2

w{4.

We note that fpw ` 2q “ fpwqw`1?
2w

and w`1?
2w

ă 4{5 for w ě 8, so

w0ÿ

Even w“4

fpwq ă fp4q ` fp6q ` 5fp8q ă 4.15.

Thus we bound the top factor (5) over all sets W of size up to w0 by

w0ÿ

Even w“4

ˆ
µ3

|Σ|2 ¨ pw ´ 1q!!
pw ´ 2q!! ¨ 22´w{4

˙
ă 16.6pµ3{|Σ|2q. (10)

4.2 Lower levels with greedy matchings

We now focus on a lower level i ď d ´ 2 where we will bound the level factor

max
Zi`1

˜ ÿ

Mi,ei,Li,Zi

|Σ|1´|Mi|
N

2p|Zi`1|´|Zi|q{4
¸
. (11)

We want a bound of Op1{|Σ|q, implying a bound of Op1{|Σ|qd´2 for all the lower levels in (6).
All that matters for our bounds is the cardinalities of the different sets, and we set mi “ |Mi|

and zi “ |Zi|. For now we assume that zi`1 ď w0 and mi are given.

Lemma 15. With a given linear ordering over a set S of size n, the number of greedy matchings
of size k over S is pn ´ 1qk.
Proof. We specify the edges one at the time. For greedy matchings, when we pick the jth edge, the
first end-point is the smallest free point in S and then there are n ´ 2j ` 1 choices for its match,
so the number of possible greedy matchings of size k is pn ´ 1qk.

21

Recall that ei denotes the last edge in our greedy matching Mi and that ei P Li. In our case,
we are only going to specify M 1

i “ Mizteiu and L1
i “ Lizteiu. The point is that if we know M 1

i and
L1
i, then we can compute ei. More precisely, we know that ei is the next greedy edge to be added

to M 1
i , so we know its first end-point x. We also know that Zi “ Ť

Li is a zero-set, so the other
end-point can be computed as key

y “ △ptxu Y
ď

L1
iq (12)

Above we note that even though the keys in x and L1
i are only specified as indices, we know how

to translate between keys and indices, so we can compute the key y and then translate it back to
an index.

By Lemma 15, we have pzi`1 ´ 1qmi´1
choices for M 1

i , and then there are 2mi´1 possible
submatchings L1

i Ă M 1
i . The number of combinations for Mi, ei, Li is thus bounded by

pzi`1 ´ 1qmi´1 ¨ 2mi´1.

We want to multiply this by
|Σ|1´mi{2pzi`1´ziq{4.

Here zi “ 2|Li| ď 2mi, so we get a bound of

pzi`1 ´ 1qmi´1 ¨ p23{2{|Σ|qmi´1{2zi`1{4´1{2 ď 21{2p23{2zi`1{|Σ|qmi´1{2zi`1{4. (13)

We now note that
p23{2zi`1{|Σ|q ď 1{2.

since zi`1 ď w ď w0 “ |Σ|{25{2. Having this factor bounded below 1 is critical because it implies
that the term decreases as mi grows.

Still keeping zi`1 fixed, we will now sum over all possible values of mi. Since Mi contains a
zero-matching Li of size at least 2, that is 2 edges covering 4 keys, we have that mi ě 2. Moreover,
the terms of the summation are halving, hence they sum to at most twice the initial bound, so we
get ÿ

miě2

21{2p23{2zi`1{|Σ|qmi´1{2zi`1{4 ď 23{2p23{2zi`1{|Σ|q{2zi`1{4. (14)

The maximizing real value of zi`1 is 4{ ln 2 “ 5.77, but zi`1 also has to be an even number, that is,
either 4 or 6, and 6 yeilds the maximum bound leading to the overall bound of 16.98{|Σ| for (6).
Together with our bound (10), we get a total bound of

16.6pµ3{|Σ|2q ¨ p17{|Σ|qd´2. (15)

4.3 Large set sizes

We now consider sets W of sizes w ą w0. In this case, we will only consider the two top levels
of the obstructions. Recall that we have a cycle traversal x1, . . . , xw. If w ą w0, we only use
the prefix x1, . . . , xw0 , where we require that w0 is even. The two matchings Md and Md´1 are
reduced accordingly. Then Md´1 is a perfect matching on W0 “ tx1, . . . , xw0u while Md is maximal
excluding xw0 . Each of these matchings can be chosen in pw0 ´ 1q!! ways.

22

This time we know that we have full independence. We know that ĂW0 is a strict subset of the
original minimimal zero set rZ of derived keys, so the keys in W0 all hash independently. Therefore
the probability that they are all selected is bounded by

ś
xPW0

px.
Also, since we terminate the traversal early, we know that Md´1 is pd´2q-linearly independent,

and Md must be d´2-linearly independent, so the probability that these two matchings are satisfied
is 1{|Σ||Md´1|`|Md| ď 1{|Σ|w0´1.

The total bound for all w ą w0 “ |Σ|{25{2 is now

ÿ

W0: |W0|“w0,Md,Md´1

˜ ź

xPW0

px

¸
{|Σ|w0´1 ď µw0

w0!
ppw0 ´ 1q!!q2{|Σ|w0´1 ď w0|Σ|{2w0 (16)

ď 1{2|Σ|{8. (17)

The last step holds easily for |Σ| ě 256. We note that (16) holds for any choice of w0, limiting the
probability of any obstruction with |W | ă w.

5 Tighter analysis

We will now tighten the analysis to prove that

Theorem 5. Let h : Σc Ñ R be a tornado tabulation hash function with d derived characters
and f be an s-selector as described above. If µf ď Σ{2, then hptq is fully random on Xf,hpsq

with
probability at least

1 ´ DependenceProbpµf , d,Σq .

5.1 Bottom analysis revisited

We first tigthen the analysis of the bottom factor (6) so as to get a bound of Opp3{Σqd´2q and,
together with our top bound (10), obtain an overall bound of Opµ3p3{Σqdq matching our lower
bound within a constant factor. We are still using our assumption that w ď w0 ď |Σ|{25{2 implying
that zi`1 ď |Σ|{25{2.

First we look at a single level i. For a tighter analysis of the level factor (11), we partition into
cases depending on zi`1 and to some degree on zi “ 2mi. Recall that zi`1 is given from the level
above.

If zi`1 ď 6, then we must have zi “ zi`1, since we cannot split into two zero sets each of size at
least 4. This implies that the factor 2|Zi`1|´|Zi| is just one. Also, in this case, Mi “ Li must be a
perfect matching on Zi`1 “ Zi, and such a perfect matching can be in pzi`1 ´ 1q!! ways. Thus, for
given zi`1 ď 6, we bound the level factor by

pzi`1 ´ 1q!!{|Σ|zi`1{2´1 ď 3{|Σ|. (18)

with equality for zi`1 “ 4. As a result, if zd´1 ď 6, then we have already achieved a bound of
p3{|Σ|qd´2 for the bottom factor.

23

Split levels. We now consider zi`1 ě 8. Now it is possible that Zi`1 can split into two sets so
that zi ă zi`1. For a given mi and zi`1, we already had the bound (13)

21{2p23{2zi`1{|Σ|qmi´1{2zi`1{4.

Since p23{2zi`1{|Σ|q ď 1{2, the worst case is achieved when mi “ 2, but here we can do a bit better.
In (13) we had a factor 2mi´1 to specify the subset Li of Mi containing ei, but since Li should have
size at least 4, we have Li “ Mi. Thus, for mi “ 2 and given zi`1, we improve (13) to

2pzi`1{|Σ|q{2zi`1{4.

For zi`1 ě 8, this is maximized with zi`1 “ 8. Thus for mi “ 2 and zi`1 ě 8, the level factor (11)
is bounded by

p2 ¨ 8{|Σ|q{22 “ 4{|Σ|.
Now, for mi ě 3, we just use the bound (13). As in (14), we get

ÿ

miě3

21{2p23{2zi`1{|Σ|qmi´1{2zi`1{4 ď 2 ¨ 21{2p23{2zi`1{|Σ|q2{2zi`1{4

Over the reals, this is maximized with zi`1 “ 2 ¨ 4{ ln 2 « 11.52, but we want the maximizing even
zi`1 which is 12, and then we get a bound of 1.6{|Σ|.

We now want to bound the whole bottom factor in the case where zd´1 ě 8. Let j be the lowest
level with zj`1 ě 8. For all lower levels, if any, the level factor is bounded by p3{|Σ|q. Also, for
all higher levels i ą j, we have 2mi “ zi ě 8, hence mi ě 4, so the level factor for higher levels is
bounded by our last 1.6{|Σ|. The worst case is the level j, where we could get any ms (note that if
s “ 1, we have no guarantee that mi ď 2), hence we have to add the bound 4{|Σ| for ms “ 2 with
the bound 1.6|Σ| for ms ě 3, for a total bound of 5.6{|Σ|.

Thus, for a given j, the bottom factor is bounded by

p3{|Σ|qj´1p5.6{|Σqp1.6{|Σ|qd´2´j “ p3{|Σ|qd´2 ˚ p5.6{3q ˚ p1.6{3qd´2´j .

Summing, this over j “ 1, . . . , d ´ 2 ě 1, we get a bound of at most

p3{|Σ|qd´2p5.6{3qp1{p1 ´ 1.6{3q ´ 1q ă 4p3{|Σ|qd´2 . (19)

This is our bound for the whole bottom factor when we maximized with zd´1 ě 8. Since it is larger
than our bound of 3{|Σ|qd´2 when we maximized with zd´1 ď 6, we conclude that it is also our
bound if we maximize over any value of zd´1. In combination with our top factor, 16.6pµ3{|Σ|2q
from (10), we get a combined bound of

16.6pµ{|Σ|2q4p3{|Σ|qd´2 ď 7µ3p3{|Σ|qd. (20)

5.2 Increasing the maximization range

We will now show how to deal with larger sets up to size w`
0 “ 0.63|Σ|. The level factor with a

fixed zi`1 and mi has the following tight version from (13)

pzi`1 ´ 1qmi´1 ¨ p23{2{|Σ|qmi´1{2zi`1{4´1{2

“ 21{4fpmi ´ 1, zi`1 ´ 1q where fpx, yq “ yx ¨ p23{2{|Σ|qx{2y{4.

24

We want to find the sum over relevant mi with the maximizing zi. However, we already considered
all even zi`1 ď |Σ|{25{2, so it suffices to consider zi`1 P p|Σ|{25{2, |Σ|{2s. Also, for a given zi`1, we
have to sum over all mi P r2, zi`1{2s. Thus we want to bound

max
odd yPr|Σ|{25{2, |Σ|{2q

ty{2uÿ

x“1

fpx, yq.

Note that fpx`1, yq “ fpx, yq¨py´2xqp23{2{|Σ|q. Hence fpx`1, yq ă fpx, yq ðñ y´2x ă |Σ|{23{2.
Assume that y ě |Σ|{23{2 and consider the smallest integer xy such that y ´ 2xy ă |Σ|{23{2.

For a given value of y this xy maximizes fpxy, yq.
To bound fpxy, yq, we note that

yx ă py ´ x ` 1qx
We have y ă w`

0 “ 0.63|Σ| and y ´ 2xy ă |Σ|{23{2, so

y ´ xy ` 1 ď p0.63 ` 1{23{2q|Σ|{2 ` 1 ď |Σ|{2.
Therefore

fpxy, yq ď y
xy ¨ p23{2{|Σ|qxy{2y{4 ď ppy ´ xy ` 1q23{2{|Σ|qxy{2y{4 ď 1{2py´2xyq{4.

We also have y ´ 2pxy ´ 1q ě |Σ|{23{2, so we get

fpxy, yq ď 1{2p|Σ|{23{2´2q{4 “ 1{2|Σ|{27{2´1{2.

For |Σ| ě 256, this is below 0.015{|Σ|2, so even if we sum over all x ď y{2 ď |Σ|{2, we get a bound
below 0.008{|Σ|, that is,

max
yPr|Σ|{23{2, w`

0 s

ty{2uÿ

x“1

fpx, yq ď 0.08{|Σ|.

Now consider y ă |Σ|{23{2. Then fpx, yq is decreasing in x starting fp0, yq “ 1{2y{4. Summing
over all x ď y{2, we get py{2q{2y{4. This expression is maximized with y “ 4{ ln 2, so for y ě |Σ|{4,
we get a maximum of p|Σ|{8q{2|Σ|{16. Now 2|Σ|{16 ě |Σ|2 for |Σ| ě 256, so we end up with

max
yPr|Σ|{4|,|Σ|{23{2s

ty{2uÿ

x“1

fpx, yq ď 1{p8|Σ|q.

Finally we consider y P r|Σ|{25{2, |Σ|{4s. Then fpx ` 1, yq ď fpx, yqpy 23{2{|Σ|q ď fpx, yq{21{2, so

8ÿ

x“0

fpx, yq ď fp0, yq{p1 ´ 2´1{2q ď 1{pp1 ´ 2´1{2q2y{4q.

With y ě |Σ|{25{2, this is maximized with y “ |Σ|{25{2, so we get the bound

max
yPr|Σ|{25{2, |Σ|{4s

8ÿ

x“0

fpx, yq ď 1{pp1 ´ 2´1{2q2p|Σ|{29{2qq ď 0.344{|Σ|.

25

Putting all our bounds together, we conclude that

max
odd yPr|Σ|{25{2, w`

0 q

ty{2uÿ

x“1

fpx, yq ď 0.344{|Σ|.

Our bound for the level factor with zi`1 ă p|Σ|{25{2, |Σ|{2s is 21{2 times bigger, but this is still
much smaller than all the bounds from Section 5.1 based on smaller zi`1. Thus we conclude that
the analysis from Section 5.1 is valid even if allow zi`1 to go the whole way up to w`

0 “ 0.63|Σ|.
Therefore (20) bounds the probability of any obstruction with set size |W | ď w`

0 .
However, for the probability of obstructions with sets sizes |W | ą w`

0 , we can apply (16),
concluding that they happen with probability bounded by

w`
0 |Σ|{2w`

0 “ 0.63|Σ|2{20.63|Σ| ă 1{2|Σ|{2.

The last step used |Σ| ě 256. Together with (20) we have thus proved that the probability of any
obstruction is bounded by

7µ3p3{|Σ|qd ` 1{2|Σ|{2. (21)

This is for simple tornado hashing without the twist.

5.3 Tornado hashing including the twist

We will now return to the original tornado hashing with the twisted character

rxrcs “ xrcs ‘ rh0pxră csq.
This twist does not increase the number of lookups: it is still c ` d with c input characters and d
derived characters, so the speed should be almost the same, but we will gain a factor 3{|Σ| in the
probability, like getting an extra derived character for free.

The obstruction is constructed exactly as before except that we continue down to level 0 rather
than stopping at level 1. All definitions for level i are now just applied for i “ 0 as well. However,
we need to reconsider some parts of the analysis. First, we need to prove that Lemma 10 also holds
for i “ 0:

Lemma 10 Let M be a partial matching on Σc. Conditioning on M being pi ´ 1q-independent,
M is an i-matching with probability 1{|Σ||M |.

Proof. Since M is p´1q-independent, we know that

DiffKeyspM,´1q “ tprx△ ryqră cs | tx, yu P Mu
is linearly independent. We note here that prx △ ryqră cs “ px △ yqră cs. We want to know the
probability that M is a 0-matching, that is, the probability that x̃rcs “ ỹrcs for each tx, yu P M .
For i ą 0, we had

x̃rc ` is “ ỹrc ` is ðñ rhipprx△ ryqră c ` isq “ 0.

However, for i “ 0, we have

x̃rcs “ ỹrcs ðñ h̃0pprx△ ryqră csq “ xrcs ‘ yrcs.

26

However, Lemma 9 states that the simple tabulation hash function h̃0 is fully random on the
linearly indepedent DiffKeyspM,´1q, so we still conclude that M is a 0-matching with probability
1{Σ|M |.

There is one more thing to consider. We have generally used that if Z is an i-zero set, that is, if
rZrď c ` is is a zero-set, then Z is also a zero-set. However, this may no longer be the case. All we
know is that rZrď cs is a zero-set. This also implies that Zră cs “ rZră cs is a zero-set. However,
we claim that à

Z “ 0 (22)

Here
À

Z is xoring that keys in Z viewed as bit-strings. Note that △Z “ H implies
À

Z “ 0.
Since Zră cs is a zero set, we know that trh0pxră csq | x P Zu is a zero set. We also know that rZrcs
is a zero set and it is equal to trh0pxră csq ‘ xrcs | x P Zu. Thus we have

àtrh0pxră csq ‘ xrcs | x P Zu “ 0 “ àtrh0pxră csq | x P Zu
implying

Àtxrcs | x P Zu “ 0. Together with Zră cs being a zero set, this settles (22). As a result,
for the coding key coding in (7) and (12), we just have to replace △ with

À
.

No other changes are needed. Level 0 gives exactly the same level factor (11) as the levels i ą 0,
so it is like getting an extra level for free. Therefore with tornado hashing we improve the bottom
factor for simple tornado hashing (19) to 4p3{|Σ|qd´1 and the probability of any small obstruction
from (20) to 7µ3p3{|Σ|qd`1. The probability of any obstruction is thus improved from (21) to

7µ3p3{|Σ|qd`1 ` 1{2|Σ|{2. (23)

5.4 Full randomness for large sets of selected keys

While implementing tabulation hashing we often want to set the character size so that all tables fit
in cache. Indeed, this is the main reason why tabulation-based hashing schemes are extremely fast
in practice. However, restricting the size of Σ constrains how many keys we can expect to be hashed
fully randomly: in particular, Theorem 5 states that a set of characters Σ allows for up to |Σ|{2
selected keys to hash fully randomly with high probability. Most experiments on tabulation-based
hashing [1, 2], though, use 8-bit characters (namely |Σ| “ 28). This implies that whenever the
selected keys are s ď 27 then they hash uniformly at random with high probability. However, we
may want local full randomness for s keys, where s " 27. A trade-off between memory usage and
number of keys hashed uniformly is of course unavoidable, however we can improve over the one in
Theorem 5 with a clever observation.

More precisely, Theorem 5 states that given a set Xf,h of query-selected keys with µf ď |Σ|{2
their derived keys are linearly dependent with probability at most DependenceProbpµ, d,Σq “
7µ3p3{|Σ|qd`1 ` 1{2|Σ|{2 while tornado is using Opc|Σ|q words of memory and exactly c` d lookups
in tables of size |Σ|. Recall that µf here is the expected size of Xf,h for a fully random h, when
the queries are chosen by an adaptive adversary. If we want to handle larger sets of selected keys
with µf " |Σ|{2 using Theorem 5, then we need to use Opc ` dq larger tables of size roughly 2µf .
The clever observation we make here is that, in order to obtain a meaningful probability bound,
it is not necessary at all to employ Opc ` dq of such larger tables. Indeed, we just need the tables
in the top two levels to have size |Ψ| ě 2µf to obtain that the derived keys are linearly dependent
with probability at most

27

14|X|3p3{|Ψ|q2p3{|Σ|qd´1 ` 1{2|Σ|{2

losing a factor two with respect to Theorem 5. We name this variant of tornado tabulation tornado-
mix tabulation, because the last two derived characters can be evaluated in parallel as in mixed
tabulation hashing [10].

Formal definition of tornado-mix. For each i “ 0, . . . , d ´ 2 we let rhi : Σc`i´1 ÝÑ Σ be a
simple tabulation hash function. For i “ d ´ 1, d we let rhi : Σc`d´2 ÝÑ Ψ be a simple tabulation
hash function. Given a key x P Σc, we define its derived key rx P Σc`d´2 ˆ Ψ2 as rx “ rx1 ¨ ¨ ¨ rxc`d,
where

rxi “

$
’’’’&
’’’’%

xi if i “ 1, . . . , c ´ 1

xc ‘ rh0prx1 . . . rxc´1q if i “ c
rhi´cprx1 . . . rxi´1q if i “ c ` 1, . . . , c ` d ´ 2.
rhi´cprx1 . . . rxc`d´2q if i “ c ` d ´ 1, c ` d.

Finally, we have a simple tabulation hash function ph : Σc`d´2 ˆ Ψ2 ÝÑ R, that we apply to the
derived key. The tornado-mix tabulation hash function h : Σc ÝÑ R is then defined as hpxq “ phprxq.

Cache efficiency. It is worth to notice that such construction allows us to store in cache all
|Σ|-sized tables while the two |Ψ|-sized tables might overflow cache. However, these larger tables
are accessed only once while evaluating tornado and they can be accessed in parallel.

Local uniformity theorem. Now we are ready to state an analogous of Theorem 4 for larger
sets of selected keys. In what follows we use f , µf and Xf,h as defined in Section 1.2.

Theorem 16. Let h “ ph ˝ rh : Σc Ñ R be a random tornado-mix tabulation hash function with d
derived characters, the last two from Ψ, and select function f . If µ “ µf ď |Ψ| {2 then the derived
selected keys rhpXf,hq are linearly dependent with probability at most

14µ3p3{|Ψ|q2p3{|Σ|qd´1 ` 1{2|Σ|{2 .

Proof. This proof works exactly as the proof of Theorem 4, except for a few slight differences. We
limit ourselves to listing such small differences. In Section 3.2 we define Z as the smallest d-zero
set among those d-zero sets minimizing the number of elements not in Q. This definition implies
that there exists x˚ P Z such that Zztx˚u is d-independent. Moreover, either Z Ď Q or we can
choose x˚ P ZzQ. In the original proof, we considered the alternating-cycle structure induced by
the top level matchings Md̊´1 and Md̊ and traversed these cycles leaving x˚ last. This ensured
that the edges from Md̊ were always “surprising” in the sense that the probability of any such
edge being realised by our random choice of h was 1{|Σ|, even after conditioning on all previously
discovered edges (these events were, indeed, independent). This observation allowed us to bound
the probability of our obstruction being realised by h. In fact, we wanted our obstruction to be
constituted by edges which realisations were independent, exluding the last edge. This is exactly
what we did in Section 3.2, where all edges but the last edge ed´1 P Md̊´1 were realised by h
independently.

In the current scenario, it is not obvious that the realisations of traversed edges from Md̊ are
all independent and the first edge introducing a dependence belongs to Md̊´1. Here, instead, we

28

traverse the alternating-cycle graph until we find a prefix W “ tx1 . . . xwu such that either (i) Md̊´1

restricted to W or (ii) Md̊ restricted to W is pd ´ 2q-dependent. Case (i) is identical to the case
already analysed, but in case (ii) we need some small changes, essentially swapping the roles of Md

and Md´1.
To understand the interplay between the two cases, note that every time we add a vertex xw,

we add an edge to Md̊´1|W if w is odd, and to Md̊ |W if w is even. Case (i) can only happen if w is
even while Case (ii) can only happen if w is odd. If we get to xw “ x˚, then we have have W “ Z
and then we are in case (i) since Z is even. Thus, if we end in case (ii), then x˚ R W .

We now consider the slightly reduced traversal sequence where we simply drop the first vertex in
the last cycle considered in the traversal. The point is that this vertex was not matched in Md̊ |W ,
but if we skip it then Md̊ |W is a perfect d ´ 2-dependent matching while Md̊´1|W is a maximal
matching. Since we did not have x˚ in W , we have W Ď Zz tx˚u implying full independence of
the hash values over W . Thus, using this reduced traversal sequence, we have swapped the roles of
the two top levels. Since we now have two cases, our union based probability bounds are doubled
(increasing the leading constant from 7 to 14).

The rest of the analysis is unchanged except that two top levels use the different alphabet Ψ.
This means Ψ replaces Σ in our bound (9) for the two top levels. This implies that our overall
bound is multiplied by |Σ|2 { |Ψ|2. Combined with the doubling, we get an overall probability bound
of

14|X|3p3{|Ψ|q2p3{|Σ|qd´1 ` 1{2|Σ|{2 .

From Theorem 16, using Lemma 2, we derive the following analogous of Theorem 5 which was
already stated in the introduction. Here we use the same notation as in Theorem 5, where hpsq are
the selection bits and hptq are the free bits.

Theorem 8. Let h “ ph ˝ rh : Σc Ñ R be a random tornado-mix tabulation hash function with d
derived characters, the last two from Ψ, and an s-selector function f . If µ “ µf ď |Ψ| {2 then hptq
is fully random on Xf,h with probability at least

1 ´ 14µ3p3{|Ψ|q2p3{|Σ|qd´1 ´ 1{2|Σ|{2 .

6 Upper Tail Chernoff

In this section, we show a Chernoff-style bound on the number of the selected keys Xf,h.

Lemma 6. Let h “ ph ˝ rh : Σc Ñ R be a random tornado tabulation hash function with d derived
characters, query keys Q and selector function f . Let IXf,h denote the event that the set of derived
selected key rhpXf,hq is linearly independent. Then, for any δ ą 0, the set Xf,h of selected keys
satisfies the following:

Pr
”ˇ̌
ˇXf,h

ˇ̌
ˇ ě p1 ` δq ¨ µf ^ IXf,h

ı
ď

ˆ
eδ

p1 ` δq1`δ

˙µf

.

Proof. We follow the proof of the Chernoff bound for the upper tail. Mainly, we let Jx denote the
indicator random variable for whether the key x gets selected in Xf,h. Then

ˇ̌
Xf,h

ˇ̌ “ ř
xPΣc Jx.

29

For simplicity, we let a “ 1 ` δ. Then for any s ą 0:

Pr
”ˇ̌
ˇXf,h

ˇ̌
ˇ ě a ¨ µf ^ IXf,h

ı
“ Pr

”ˇ̌
ˇXf,h

ˇ̌
ˇ ¨ rIXf,hs ě a ¨ µf

ı

“ Pr
”
es|Xf,h|¨rIXf,hs ě esa¨µf

ı

ď
E
”
M|Xf,h|¨rIXf,hspsq

ı

esa¨µf ,

where M|Xf,h|¨rIXf,hspsq is the moment generating function of the random variable pˇ̌Xf,h
ˇ̌ ¨ rIXf,hsq,

and is equal to:

M|Xf,h|¨rIXf,hspsq “ E
”
es¨|Xf,h|¨rIXf,hsı “

8ÿ

i“0

si

i!
¨ E

„ˇ̌
ˇXf,h

ˇ̌
ˇ
i ¨ rIXf,hs

.

Since
ˇ̌
Xf,h

ˇ̌ “ ř
xPΣc Jx, each moment E

”ˇ̌
Xf,h

ˇ̌i ¨ rIXf,hs
ı
can be written as the sum of expectations

of the form ErśxPS Jx ¨ rIXf,hss, where S Ď Σc is a fixed subset of size ď i. In general, the
moment generating function can be written as a sum, with positive coefficients, of terms of the
form ErśxPS Jx ¨ rIXf,hss for some fixed subset S. Moreover, each such term amounts to

E

«ź

xPS
Jx ¨ rIXf,hs

ff
“ Pr

”
S Ď Xf,h ^ IXf,h

ı
.

We now condition on the hash values of the query keys h|Q. For any set S Ď Σc, we let ISYQ

denote the event that the derived keys in rhpS YQq are linearly independent. Note that IXf,h being
true implies that ISYQ is true. Moreover, since S YQ is a fixed (deterministic) set, the event ISYQ

only depends on the randomness of rh. We get the following:

Pr
”
S Ď Xf,h ^ IXf,h

ˇ̌
ˇ h|Q

ı
ď Pr

”
S Ď Xf,h ^ ISYQ

ˇ̌
ˇ h|Q

ı

“ E
”

rISYQs ¨ Pr
´
S Ď Xf,h

ˇ̌
ˇ rh, h|Q

¯ ˇ̌
ˇ h|Q

ı

“ E
”ź

xPS
J ˚

x

ˇ̌
ˇ h|Q

ı
,

where tJ ˚
xuxPX denotes the indicator random variables for choosing to select the keys in S

independently and uniformly at random when we fix the hash values of the query keys. This last
step is due to the fact that the event if ISYQ is true then, then ph|S , h|Qq is fully random and it
has the same distribution as ph˚|S , h|Qq, where h˚ is a fully-random hash function. If ISYQ is false,
then the entire expression is 0. We can thus continue the proof of Chernoff’s as if

ˇ̌
Xf,h

ˇ̌
were a

sum of independent random variables. The claim follows by noticing that, when IXf,h is true, we
have that E

“
Xf,h

‰ ď µf .

30

6.1 Upper Tail Chernoff for larger µf

We now consider the case in which we have a selector function for which µf ą |Σ| {2. In this case,
even though we cannot guarantee that the set of derived selected keys is linearly independent whp,
we show that, whp, its size still cannot be much larger than µf . This particular case will be useful
in the analysis of linear probing from Section 7.

Lemma 17. Let h “ ph ˝ rh : Σc Ñ R be a random tornado tabulation hash function with d derived
characters, query key Q with |Q| ă |Σ| {2, and selector function f such that µf ą |Σ| {2. Then, for
any δ ą 0, the set of selected derived keys Xf,h satisfies the following:

Pr
”ˇ̌
ˇXf,h

ˇ̌
ˇ ě p1 ` δq ¨ µf

ı
ď 4 ¨

ˆ
eδ0

p1 ` δ0q1`δ0

˙|Σ|{2
` 4 ¨ DependenceProbp|Σ| {2, d,Σq ,

where

δ0 “ µf

µf ´ |Q| ¨ |Σ| {2 ´ |Q|
|Σ| {2 ¨ δ ě

ˆ
1 ´ |Q|

|Σ| {2
˙

¨ δ .

Proof. We modify the given selector function f to get another selector function fp with the same
set of query keys Q but with a much smaller µfp . Selection according to fp is done such that, once
f selects a key in ΣczQ, fp further sub-selects it with some probability p. This sub-selection is done

independently for every selected key. It follows that, for all x P ΣczQ, p
fp
x “ pfx ¨ p. Taking into

account query keys, we also get that µfp “ pµf ´ |Q|q ¨ p ` |Q| “ pµf ` p1 ´ pq |Q|.
Moreover, one can show that, as long as µfp ď |Σ| {2, all our results about linear indepen-

dence also hold for such sub-sampled select function. In particular, the only aspect of the proof

of Theorem 4 that depends on the probabilities p
fp
x is the proof of Lemma 14. There, we in-

voke Lemma 9 to get an upper bound on the probability that the set W ztxwu is selected, given
that it is d-independent. Notice that, if, additionally, we sub-sample elements from W ztxwu each
independently with probability p, we obtain the same bounds as if we initially selected elements

with probability p
fp
x . Therefore, when µf ą |Σ| {2, we can pick any p ď p|Σ| {2´ |Q|q{pµf ´ |Q|q to

get that the set of derived keys for the sampled selection rXfp,h is indeed linearly independent with
probability at least 1 ´ DependenceProbpµfp , d,Σq. We use IXfp,h to denote this event.

The next step is to notice that, conditioned on
ˇ̌
Xf,h

ˇ̌ ´ |Q|, the distribution of
ˇ̌
Xfp,h

ˇ̌ ´ |Q|
is exactly the binomial distribution Bpˇ̌Xf,h

ˇ̌ ´ |Q| , pq. Then, for p ą 1{pˇ̌Xf,h
ˇ̌ ´ |Q|q, we have

from [20] that

Pr
”ˇ̌
ˇXfp,h

ˇ̌
ˇ ě E

”ˇ̌
ˇXfp,h

ˇ̌
ˇ |

ˇ̌
ˇXf,h

ˇ̌
ˇ
ı

|
ˇ̌
ˇXf,h

ˇ̌
ˇ
ı

ą 1{4 .

Therefore, for any t ą 0:

Pr
”ˇ̌
ˇXfp,h

ˇ̌
ˇ ě p ¨ t ` p1 ´ pq |Q|

ˇ̌
ˇ
ˇ̌
ˇXf,h

ˇ̌
ˇ ě t

ı
ą 1{4 .

We now use this to derive an upper bound on Pr
`ˇ̌
Xf,h

ˇ̌ ě t
˘
as such:

31

Pr
´ˇ̌
ˇXf,h

ˇ̌
ˇ ě t

¯
ă 4 ¨ Pr

´ˇ̌
ˇXfp,h

ˇ̌
ˇ ě p ¨ t ` p1 ´ pq |Q|

ˇ̌
ˇ
ˇ̌
ˇXf,h

ˇ̌
ˇ ě t

¯
¨ Pr

´ˇ̌
ˇXf,h

ˇ̌
ˇ ě t

¯

ď 4 ¨ Pr
´ˇ̌
ˇXfp,h

ˇ̌
ˇ ě p ¨ t ` p1 ´ pq |Q|

¯

ď 4 ¨ Pr
´ˇ̌
ˇXfp,h

ˇ̌
ˇ ě p ¨ t ` p1 ´ pq |Q| ^ IXfp,h

¯
`

` 4 ¨ DependenceProbpµfp , d, |Σ|q .

We now plug in t “ p1 ` δq ¨ µf , and get that p ¨ t ` p1 ´ pq |Q| ě p1 ` δ0q ¨ µfp for

δ0 ď pµf

µfp
¨ δ .

We then invoke Lemma 6 to get that

Pr
´ˇ̌
ˇXfp,h

ˇ̌
ˇ ě p1 ` δ0q ¨ µfp ^ IXfp,h

¯
ď
ˆ

eδ0
p1 ` δ0q1`δ0

˙µfp

.

Finally, we instantiate p “ p|Σ| {2´ |Q|q{pµf ´ |Q|q such that µfp “ |Σ| {2. and notice that indeed,
p ą 1{pˇ̌Xf,h

ˇ̌ ´ |Q|q when
ˇ̌
Xf,h

ˇ̌ ě p1 ` δq ¨ µf and |Q| ă |Σ| {2. We notice that, in this case,

δ0 “ µf

µf ´ |Q| ¨ |Σ| {2 ´ |Q|
|Σ| {2 ¨ δ ě

ˆ
1 ´ |Q|

|Σ| {2
˙

¨ δ .

The argument follows.

7 Linear Probing with Tornado Tabulation

In this section we show how to formally apply our framework to obtain results on linear probing
with tornado tabulation. We present the following main result comparing the performance of linear
probing with tornado tabulation to that of linear probing using fully random hashing on a slightly
larger keyset.

Theorem 18. Let S, S˚ Ď Σc be sets of keys of size n and n˚ “ p1`15
a

logp1{δq{|Σ|qn, respectively,
for some δ P p0, 1{6q. Let T , T ˚ be arrays of size m, a power of two. Now consider inserting the
keys in S (S˚) into T (T ˚) with linear probing using tornado tabulation (fully random hashing).
Let X and X˚ be the number of comparisons performed when inserting a new key x in each of
T and T ˚ (i.e., x R S Y S˚). Given the restrictions listed below there exists an event E with
PrpEq ě 1 ´ p1{|Σ| ` 6δ ` 61 log n ¨ DependenceProbp|Σ|{2, d,Σqq such that, conditioned on E, X is
stochastically dominated by X˚.
Restrictions:

• n{m ď 4{5
• |Σ| ě 216

32

• |Σ| ě 30 ¨ log n
•
a

logp1{δq{|Σ| ď 1{18
From Theorem 18, it follows that linear probing using tornado tabulation achieves the same

expected number of comparison as in the fully random setting, a proof is given in Section 7.4.

Corollary 19. Setting δ “ Θp1{|Σ|q, d ě 5, log n ď op|Σ|q in Theorem 18 we have

ErXs ď ErX˚s ` op1q .
The result of Corollary 19 is to be contrasted with previous work on practical implementations

of linear probing. While Knuth’s analysis serves as evidence of linear probing’s efficieny in terms
of the number of comparisons performed, the advantage of linear probing (over other hash table
implementations) is that each sequential memory access is much faster than the random memory
access we do for the first probe at T rhpxqs. How much faster depends on the computer system as
does the cost of increasing the memory to reduce the load. Some experimental studies [7, 21, 34]
have found linear probing to be the fastest hash table organization for moderate load factors (30-
70%). If the load is higher, we could double the table size.

However, using experimental benchmarks to decide the hash table organization is only meaning-
ful if the experiments are representative of the key sets on which linear probing would be employed.
Since fully random hashing cannot be efficiently implemented, we might resort to weaker hash func-
tions for which there could be inputs leading to much worse performance than in the benchmarks.
The sensitivity to a bad choice of the hash function led [21] to advice against linear probing for
general-purpose use. Indeed, Mitzenmacher and Vadhan [27] have proved that 2-independent hash-
ing performs as well as fully random hashing if the input has enough entropy. However, [36, 30] have
shown that with the standard 2-independent linear hashing scheme, if the input is a dense set (or
more generally, a dense subset of an arithmetic sequence), then linear probing becomes extremely

unreliable and the expected probe length increases from Knuth’s 1`1{ε2
2 to Ωplog nq, while the best

known upper bound in this case is nop1q [24].8

In a breakthrough result, Pagh, Pagh and Ružić [29] showed that if we use 5-independent hashing
and the load gap ε “ Ωp1q, then the expected probe length is constant. Pǎtraşcu and Thorup [31]
generalized this to an Op1{ε2q bound for arbitrary ε, and showed that this also holds for simple
tabulation hashing. However, in both cases, the analysis hides unspecified large constants in the
O-notation. Thus, with these hashing schemes, there could still be inputs for which linear probing
performs, say, 10 times worse in expectation, and then we would be better off using chaining.

Our result is of a very different nature. We show that whp, for any given query key x, the probe
length corresponding to hpxq when we use tornado tabulation hashing is stochastically dominated
by the probe length in a linear probing table that hashes slightly more keys but uses fully random
hashing. In particular, this implies that whp, the expected probe length with tornado tabulation

hashing is only a factor 1 ` op1q away from Knuth’s 1`1{ε2
2 . We get this result without having to

revisit Knuth’s analysis from [25], but simply because we know that we are almost as good as fully
random hashing, in a local sense that is sufficient for bounding the probe length (see Section 7.1).

As a further consequence of our results, we get that any benchmarking with random keys that
we do in order to set system parameters will be representative for all possible sets of input keys.

8We note that if we only know that the hash function is 2-independent, then the lower bound for the expected
probe length is Ωp?

nq and this is tight. [36, 30]

33

Moreover, the fact that tornado tabulation hashing only needs locality to perform almost as well
as fully random hashing means that our arguments also work for other variants of linear probing.
For instance, ones where the maintenance of the hash table prioritizes the keys depending on when
they were inserted, as first suggested in [4]. Examples of this include Robin hood hashing where
keys with the lowest hash value come first [8] or time-reversed linear probing [34] where the latest
arrival comes first. In all these cases, tornado tabulation hashing performs almost as well as with
fully-random hashing.

7.1 Proof of Theorem 18

We let α “ n{m denote the fill of the hash table and ε “ 1 ´ α. The basic combinatorial measure
that we study and employ is the run length: If cells T ras, T ra` 1s, . . . , T rb´ 1s are all occupied by
elements from S but both T ra ´ 1s and T rbs are freem these b ´ a cells are called a run of length
b ´ a. Let Rpx, Sq be the length of the run intersecting T rhpxqs and note that Rpx, Sq ` 1 is an
upper bound on the number of comparisons needed to insert some element y into the table when
y hashes to the same location as x.

Let ∆ be the largest power of two such that 3α∆ ` 1 ď |Σ|{2. The following lemma, proven in
Section 7.3, gives an upper bound on the probability that hpxq intersects a long run.

Lemma 20.

PrrRpx, Sq ě ∆s ď 1

|Σ| ` 60 log n ¨ DependenceProbp|Σ|{2, d,Σq .

Let A be the event pRpx, Sq ě ∆q. AssumingA, there exists at least one unoccupied cell in table
T between T rhpxq´∆s and T rhpxqs and likewise between T rhpxqs and T rhpxq`∆s. Hence the inser-
tion of x only depends on the distribution of the much smaller key-set

s P S

ˇ̌ |hpsq ´ hpxq| ď ∆
(
.

The second step of our proof bounds the probability that tornado tabulation behaves like a fully
random hash function when restricted to this small set of keys. As Theorem 5 doesn’t apply for
arbitrary intervals we will instead cover the necessary interval with three dyadic intervals. Recall
that a dyadic interval is an interval of the form rj2i, pj ` 1q2iq, where i, j are integers. In the
following we will exclusively consider a number of dyadic intervals all of length ∆. Let IC denote
the dyadic interval that contains hpxq, and similarly let IR and IL denote the dyadic intervals to
the left and right, respectively, of IC . We further let XC be the set of keys in S that hash into the
interval IC , i.e., XC “ tx P S | hpxq P ICu, and similarly, XR and XL are the pre-image of h in IR
and IL, respectively. Given A, the distribution of X is completely determined by the distribution
of the keys in XL Y XC Y XR and hpxq.

The expected size of each preimage is α∆ and our choice of ∆ thus allows us to apply Theorem 5
to all three intervals at once. Let B be the event that the keys hashing into these intervals are
distributed independently:

Corollary 21. With probability at least 1 ´ DependenceProbp|Σ|{2, d,Σq, h̃pXR Y XC Y XL Y txuq
is linearly independent, such that h hashes the keys in XR Y XC Y XL Y txu independently and
uniformly in their respective intervals.

We now define the analogous terms in the fully random setting. We let IC̊ denote the dyadic
interval in T ˚ that contains h˚pxq and IR̊ and IL̊ the right and left neighboring dyadic intervals.
Similarly, we let XC̊ , XR̊ and XL̊ denote their preimages under h˚. The following lemma compares
the two experiments in terms of the sizes of these preimages, and is proven in Section 7.2.

34

Lemma 22. Let C be the event |XL| ď |XL̊| ^ |XC | ď |XC̊ | ^ |XR| ď |XR̊|, then
Pr

“
B ^ C̄

‰ ď 6δ

Let C be the event that each of the preimages Xi contain at most as many elements as the
corresponding preimage Xi̊ . Finally, define E “ A X B X C. We will now present a coupling X̃ of
X which, when conditioned on E , satisfies X̃ ď X˚.

For every realization of |XL|, |XC | and |XR|, we consider the following random process: starting
from an emtpy table of size m and using the fully random h˚, insert the first |XL| elements from
XL̊, then the first |XR| elements from XR̊ and finally, the first |XC | elements from XC̊ (we do
not insert any more elements after this). Note that, conditioned on C, we have that it is possible
to choose such elements (i.e., |XR| ď |XR̊| etc.). Now let X̃ denote the number of comparisons
performed when inserting x into the table at this point in time.

We now have that X (defined for the tornado tabulation) is identically distributed as X̃ (defined
for a fully random hash function). This is because event A implies that the distribution of X only
depends on XR, XC and XL. Event B further implies that, on these intervals, h behaves like a
fully random hash function. Now note that X̃ ď X˚, since we can continue the random process
and add the remaining keys in S˚ and this can only increase the number of comparisons required
to insert x (i.e., “more is worse”).

Left is to compute the total probability that any of our required events fail:

Pr
“
Ē
‰ “ Pr

“
Ā _ B̄ _ C̄

‰

“ Pr
“pĀ _ C̄q ^ B

‰ ` Pr
“
B̄
‰

ď Pr
“
Ā
‰ ` Pr

“
B ^ C̄

‰ ` Pr
“
B̄
‰

ď 1{|Σ| ` 6δ ` 61 ¨ log n ¨ DependenceProbp|Σ|{2, d,Σq .
This concludes the proof.

7.2 Proof of Lemma 22

As ∆ is chosen to be the largest power of two such that 3α∆ ď |Σ|{2 we get |Σ|
12α ď ∆. Let t be a

constant, to be decided later. For each i P tL,C,Ru let Ei be the event (|Xi| ď t) and Ei̊ be the
event (t ď |Xi̊ |).

Pr
“
B ^ C̄

‰ “ PrrB ^ Di P tL,C,Ru : |Xi| ą |Xi̊ |s
ď Pr

“
B ^ Di P tL,C,Ru : Ēi _ Ēi̊

‰

ď
ÿ

iPtL,C,Ru
pPrrB ^ |Xi| ą ts ` PrrB ^ |Xi̊ | ă tsq

ď
ÿ

iPtL,C,Ru
pPrrB ^ |Xi| ą ts ` Prr|Xi̊ | ă tsq

Let µ “ Er|Xi|s “ ∆α, k “ a
3 logp1{δq{µ and t “ p1 ` kqµ. Applying the tail-bound of

35

Lemma 6 we have

PrrB ^ |Xi| ą ts “ PrrB ^ |Xi| ą p1 ` kqµs
ď exp

`´k2µ{3˘

“ δ .

As µ “ α∆ ě |Σ|{12 we have

k “ a
3 logp1{δq{pα∆q

ď a
36 logp1{δq{|Σ|

ď 1{3 .

As n˚ “ p1`15
a

logp1{δq{|Σ|qn ě p1`2.5kqn, µ˚ “ Er|Xi̊ |s ě p1`2.5kqµ. Next, let k˚ “ k ¨a2{3.
Then

µ˚ ¨ p1 ´ k˚q ě p1 ` 2.5kq ¨ µ ¨ p1 ´ k˚q
“ p1 ` 2.5kq ¨ µ ¨ p1 ´ a

2{3 ¨ kq
ě µ ¨ p1 ` kq
“ t .

Hence

Prr|Xi̊ | ă ts ď Prr|Xi̊ | ă p1 ´ k˚qµ˚s
ď expp´pk˚q2µ˚{2q
“ expp´k2µ˚{3q
ď expp´k2µ{3q
“ δ .

Summing over the six cases we see PrrB ^ Di P tL,C,Ru : |Xi| ą |Xi̊ |s ď 6δ.

7.3 Proof of Lemma 20

Our proof relies on the simple observation that if T ras through T rbs are all occupied and the run
starts in T ras (i.e. T ra ´ 1s is free which excludes the possibility of prior positions spilling over),
then the preimage h´1pra, bsq “ ts P S |hpxq P ra, bsu must have size at least |b ´ a|. It must also
be the case that either (1) the preimage h´1pra ` 1, bsq has size at least pb ´ aq ¨ p1 ´ γq or (2) the
preimage h´1pra, asq is of size at least pb ´ aq ¨ γ, for any parameter γ ě 0.

We can generalize this to consider a run starting in any position T rbs within some interval
b P ra, cs which continues through T rds, then either (1)

ˇ̌
h´1prc, dsqˇ̌ ě pd ´ cq ¨ p1 ´ γq or (2)ˇ̌

h´1pra, csqˇ̌ ě pd´cq ¨γ. We will refer to ra, cs as the start-interval and to rc, ds as the long interval.
Our strategy is to make both of these events unlikely by balancing the size of the start-interval

with the number of keys needed to fill up the long interval. Larger difference pd ´ cq allows for
a larger start-interval. With a collection of roughly log1`ε{p6αq m such start-intervals we cover all
possible starting poisitions before T rhpxq ´∆s, ruling out the possibility that a run starting before

36

T rhpxq ´ ∆s reaches T rhpxqs. The same strategy applied once more rules out the possibility that
the run intersecting T rhpxqs will continue through T rhpxq ` ∆s.

For our proof we set γ “ ε{3 where ε “ 1´n{m is the fill gap of T . The first pair of intervals we
consider is the long interval I0 “ rhpxq´∆, hpxqs and the start-interval I 1

0 of size ∆ε{p6αq preceding
I0. Next follows the long interval I1 “ I 1

0 Y I0 with start-interval I 1
1 of length |I1| ε{p6αq preceding

it, and so forth. Let ∆i “ |Ii| and ∆1
i “ |I 1

i|. Observe how ∆i “ ∆ ¨ p1 ` ε{p6αqqi, bounding the
number of needed interval-pairs at log1`ε{p6αqpm{∆q.

Depending on the length of the interval being inspected we can apply either Lemma 6 or
Lemma 17 to bound the probability that the preimage exceeds the given threshold. Taking the
maximum of the two bounds simplifies the analysis. Letting X be the size of a preimage, µ “ ErXs
and δ ď 1 we obtain

PrrX ě p1 ` δqµs ď DependenceProbp|Σ|{2, d,Σq ` 4 ¨ exp `´δ2 ¨ min t|Σ|{2, µu {3˘ .

Let Xi be the size of the preimage of the long interval Ii of length ∆i with µi “ α∆i. Then

PrrXi ě p1 ´ ε{3q∆is “ Pr

„
Xi ě

ˆ
1 ` 2ε

3α

˙
α∆i

ď Pr

„
Xi ě

ˆ
1 ` 2ε

3

˙
µi

ď DependenceProbp|Σ|{2, d,Σq ` 4 ¨ exp
˜

´
ˆ
2ε

3

˙2

¨ min tµi, |Σ|{2u
3

¸

Notice how the probability is non-increasing for increasing sizes of the intervals. Thus we bound
each of the probabilites for a long interval exceeding its threshold by the probability obtained for
I0 with µ0 “ α∆ ď |Σ|{2.

For start-interval I 1
i of length ∆1

i with µ1
i “ α∆1

i “ ∆i ¨ ε{6 we observe the same pattern

Pr
“
X 1

i ě ε{3∆i

‰ “ Pr
“
X 1

i ě 2µ1
i

‰

ď DependenceProbp|Σ|{2, d,Σq ` 4 ¨ exp
ˆ

´max tµ1
i, |Σ|{2u
3

˙
,

where we can bound the probability that each start-interval is too large by the probability obtained
for I 1

0 with µ1
0 “ ∆ε{6.

The probability that any of our intervals is too large is thus at most

2 log1`ε{p6αq m ¨ `DependenceProbp|Σ|{2, d,Σq ` 4 exp
`´4{27 ¨ ε2α∆˘˘

where use that 4{9 ¨ ε2α∆ ď ε∆{9 ď ε∆{6 as ε ` α “ 1, hence the probability obtained for I0 is
larger than that for I 1

0.
Let us rewrite this expression in terms of n and |Σ|, our main parameters.

log1`ε{p6αq m “ log1`ε{p6αq n ` log1`ε{p6αqp1{αq
ď log n ¨ log1`ε{p6αqp2q ` 6

ď log n ¨ 6α{ε ` 6

ď 30 ¨ log n ,

37

using ε ě 1{5. As α∆ ě |Σ|{12, we get

4 exp
`´4{27 ¨ ε2α∆˘ ď 4 exp

`´4{27 ¨ ε2|Σ|{12˘

ď 4 exp p´1{2025 ¨ |Σ|q
ď 1

2|Σ|2
as |Σ| ě 216. Assuming 30 ¨ log n ď |Σ| the total error-probability becomes

1{p2|Σ|q ` 30 ¨ log n ¨ DependenceProbp|Σ|{2, d,Σq .
Repeating the process once more to ensure that the run at T rhpxqs doesn’t continue past

T rhpxq ` ∆s doubles the error-probability and proves the lemma.

7.4 Proof of Corollary 19

To bound the expected number of comparisons we rely on the following lemma from [31] which
gives strong concentration bounds for the runlength when applied to our simple tabulation ph.
Lemma 23 (Corollary 3.2 in [31]). For any γ “ Op1q and ℓ ď n1{p3pc`dqq{α,

PrrRpx, Sq ě ℓs ď
"

2e´Ωpℓε2q ` pℓ{mqγ if α ě 1{2
αΩpℓq ` pℓ{mqγ if α ď 1{2

where the constants hidden in O and Ω are functions of c` d, the size of the derived keys on which
we apply simple tabulation.

In particular this implies that, for some ℓ “ Θ
`plog nq{ε2˘, we have that Rpq, Sq ě ℓ with

probability at most 1{n10. Let E be the event of stochastic dominance, as given by Theorem 18,
and A the event pRpx, Sq ď ℓq. Then

ErXs “ ErX | Es ¨ PrrEs ` E
“
X | Ē ^ A

‰ ¨ Pr“Ē ^ A
‰ ` E

“
X | Ē ^ Ā

‰ ¨ Pr“Ē ^ Ā
‰
.

First, observe

ErX | Es ¨ PrrEs “
ÿ

i“1

PrrX ě i | Es ¨ PrrEs

ď
ÿ

i“1

PrrX˚ ě i | Es ¨ PrrEs

“
ÿ

i“1

PrrX˚ ě i ^ Es

ď
ÿ

i“1

PrrX˚ ě is

“ ErX˚s .
With δ “ 1{|Σ| and d ě 5, Pr

“
Ē
‰ ď 9{|Σ|. Assuming A, the next open cell of T is at most ℓ

positions away,

E
“
X | Ē ^ A

‰ ¨ Pr“Ē ^ A
‰ ď ℓ ¨ Pr“Ē‰

ď Θ

ˆ
log n

ε2

˙
¨ 9

|Σ|
ď op1q .

38

Finally, no more than n comparisons will ever be necessary. Hence

E
“
X | Ē ^ Ā

‰ ¨ Pr“Ē ^ Ā
‰ ď n ¨ Pr“Ā‰

ď 1{n9 .

This gives the desired bound on ErXs,
ErXs ď ErX˚s ` op1q ` 1{n9 .

8 Lower Bound for Tornado Tabulation

In this section, we show that the probability obtained in Theorem 4 is tight up to constant factors.
Specifically, we will prove the following:

Theorem 7. Let h “ ph ˝ rh : Σc Ñ R be a random tornado tabulation hash function with d derived
characters. There exists a selector function f with µf ď Σ{2 such that the derived selected keys
rhpXf,hq are linearly dependent with probability at least Ωpp3{|Σ|qd´2q.

Our strategy will mimic that in the proof of Theorem 4 and show that the set of derived selected
keys will contain a zero-set with probability at least Θppµf q3p3{|Σ|qd`1q. We begin by establishing
some initial general bounds. In the following, we define rh1 : Σc Ñ Σc`d to map keys in Σc to simple
derived keys in Σc`d by applying the same functions as rh except with rh0p¨q “ 0, i.e., for all i ą 1,
rh1
c`i “ rhc`i.

Definition 1. We say that a zero-set Y Ď Σc survives d rounds of tornado tabulation if the set
rh1pY q Ď Σc`d of its simple derived keys is also a zero-set.

We focus on zero-sets of size 4 and lower bound the probability that they survive successive
rounds of tornado tabulation. We first define some terminology necessary to describe how each
new derived character in rx1 behaves. Specifically, let Y “ tx1, x2, x3, x4u be a zero-set, for some
fixed ordering of its keys. We distinguish between four types of positions i P t1, . . . , cu as such:
(1) position i is of Type A iff x1ris “ x2ris and x3ris “ x4ris, (2) it is of Type B iff x1ris “ x3ris,
x2ris “ x4ris, (3) it is of Type C iff x1ris “ x4ris and x2ris “ x3ris and, (4) it is of Type D iff
x1ris “ x2ris “ x3ris “ x4ris. We now prove that”

Lemma 24. Let Y Ď Σc be a zero-set with |Y | “ 4. Then, for any c ě 2, Y survives one round of
tornado tabulation with probability p3 ´ 2{ |Σ|q { |Σ| .

Proof. Since the original keys in Y already form a zero-set, the set of simple derived keys rh1pY q is a
zero-set iff the set of simple derived characters rh1

c`1pY q is a zero-set. Moreover, the cases in which
rh1
c`1pY q is a zero-set can be classified based on the type of position c ` 1. Specifically, let Ac`1

denote the event that position c`1 is of Type A, i.e., rh1
c`1px1q “ rh1

c`1px2q and rh1
c`1px3q “ rh1

c`1px4q,
and similarly for Bc`1, Cc`1, and Dc`1. Then

Pr pY survives one roundq “ Pr
´
rh1
c`1pY q is a zero-set

¯

“ Pr pAc`1 _ Bc`1 _ Cc`1q
“ Pr pAc`1q ` Pr pBc`1q ` Pr pCc`1q ´ Pr pAc`1 ^ Bc`1q ´
Pr pAc`1 ^ Cc`1q ´ Pr pBc`1 ^ Cc`1q ` Pr pAc`1 ^ Bc`1 ^ Cc`1q
“ 3Pr pAc`1q ´ 2Pr pDc`1q ,

39

where the last equality follows from the fact that the events Ac`1, Bc`1 and Cc`1 are equivalent up
to a permutation of the elements in Y , and the fact that the conjunction of any pair of events in
Ac`1, Bc`1 and Cc`1 implies Dc`1, and vice-versa.

We now bound Pr pAc`1q and Pr pDc`1q. Recall that, by definition, the simple derived character
rh1
c`1pxq is the output of a simple tabulation hash function applied to the key x. Specifically, for

each i P t1, . . . , cu, let Ti : Σ Ñ Σ denote a fully random function. Then

rh1
c`1pxq “ T1pxr1sq ‘ . . . ‘ Tcpxrcsq .

Let IA, IB, IC and ID partition the set of positions in the original keys t1, . . . , cu based on their type,
i.e., IA consists of positions that are of Type A but not Type D, similarly for IB and IC , and finally
ID denotes the positions of Type D. We then define TApxq “ ‘iPIATirxriss and similarly TBpxq,
TCpxq, and TDpxq. When Ac`1 happens, we have that rh1

c`1px1q “ rh1
c`1px2q, which is equivalent to

TBpx1q ‘ TCpx1q “ TBpx2q ‘ TCpx2q ,
since TApx1q “ TApx2q and TDpx1q “ TDpx2q by definition. Similarly, rh1

c`1px3q “ rh1
c`1px4q, is

equivalent to
TBpx3q ‘ TCpx3q “ TBpx4q ‘ TCpx4q .

Note that, by definition, x1ris “ x3ris and x2ris “ x4ris for all i P IB, and hence TBpx1q “ TBpx3q
and TBpx2q “ TBpx4q. Similarly, TCpx1q “ TCpx4q and TCpx2q “ TCpx3q. Therefore, both equalities
are equivalent to

TBpx1q ‘ TCpx1q ‘ TBpx2q ‘ TCpx2q “ 0 .

Given that x1ris ‰ x2ris for all i P IB Y IC and the Ti’s are independent, we have that

PrrTBpx1q ‘ TCpx1q ‘ TBpx2q ‘ TCpx2q “ 0s “ 1{ |Σ| .

In order to bound Pr pDc`1q, we first note that

Pr pDc`1q “ Pr pAc`1 ^ Bc`1q “ Pr pAc`1q ¨ Pr pBc`1 | Ac`1q “ 1{ |Σ| ¨ Pr pBc`1 | Ac`1q .

A similar argument as before shows that event Bc`1 is equivalent to

TApx1q ‘ TCpx1q ‘ TApx3q ‘ TCpx3q “ 0 .

Note, in particular, that the event Bc`1 depends on positions in IA and IC , while the event Ac`1

depends on positions in IB and IC . Moreover, it cannot be that both IA and IB are empty, since
then we would not have a zero-set of size 4 (i.e., we would get that x1 “ x4 and x2 “ x3). Therefore,
IB Y IC ‰ IA Y IC and the two events Ac`1 and Bc`1 are independent, and so Pr pDc`1q “ 1{ |Σ|2.
The claim follows.

As a corollary, we get the following:

Corollary 25. For any c ě 2, a zero-set Y Ď Σc with |Y | “ 4 survives d rounds of tornado
tabulation with probability pp3 ´ 2{ |Σ|q { |Σ|qd .

40

Proof. We prove the claim by induction on d and note that the case in which d “ 1 is covered
in Lemma 24. Now assume that the statement is true for d ´ 1. Recall that rx1 denotes the simple
derived key and that rx1rď c`d´1s denotes the first c`d´1 characters of rx1. By extension, let rY 1
denote the set of simple derived keys of Y and similarly, rY 1rď c`d´1s “ trx1rď c ` d ´ 1s | x P Y u
and rY 1rc ` ds “ trx1rc ` ds | x P Y u. Finally, let Ed´1 and Ed denote the events that the set rY 1 and
rY 1rď c ` d ´ 1s, respectively, are zero-sets. Then:

Pr pEdq “ Pr
´
Ed´1 and rY 1rc ` ds is a zero-set

¯

“ Pr pEd´1q ¨ Pr
´
rY 1rc ` ds is a zero-set | Ed´1

¯

“ pp3 ´ 2{ |Σ|q { |Σ|qd´1 ¨ Pr
´
rY 1rc ` ds is a zero-set | Ed´1

¯
,

where the last equality holds by the inductive hypothesis. To finish things up, we note that the
event rY 1rc ` ds conditioned on Ed´1 is equivalent to the set rY 1rď c ` d ´ 1s surviving one round of
tabulation hashing. Hence, it happens with probability p3 ´ 2{ |Σ|q { |Σ| and the claim follows.

8.1 Proof of Theorem 7

The hard instance. Consider the set of keys S “ t0, 1u ˆ Σ and note that rh0 on this set induces
a permutation of the characters in Σ. Specifically, every key of the form 0c for some c P Σ will be
mapped to the element 0c1, where c1 “ rh0p0q ‘ c and the mapping c Ñ rh0p0q ‘ c is a permutation.
Similarly for keys 1c. Therefore, we can assume without loss of generality that rh0p¨q “ 0 and get
that:

Pr
´
rhpXf,hq is linearly dep.

¯
“ Pr

´
D a four-set Y Ď Xf,h that survives d rounds of tornado tab.

¯
.

We then define the selector function to select a key x if x P S and the two leftmost output
characters of hpxq are both 0. Note then than that the probability that an x P S gets selected
to Xf,h is 1{4 and hence, µf “ |Σ{2|. We now focus on zero-sets from S of size 4 and, for any
c1, c2 P Σ with c1 ă c2, we denote the zero-set of size four t0c1, 1c1, 0c2, 1c2u by Y pc1, c2q. We then
let Y “ tY pc1, c2q | c1 ă c2 P Σu and let EipY q denote the event that a zero-set Y survives i rounds
of tornado tabulation. We lower bound the probability that rhpXf,hq is linearly dependent by only
focusing on zero-sets in Y:

Pr
´
rhpXf,hq is linearly dep.

¯
ě Pr

´
DY P Y s.t. EdpY q ^ Y Ď Xf,h

¯

ě Pr
´

DY P Y s.t. EdpY q ^ Y Ď Xf,h
¯

ě Pr pDY P Y s.t. EdpY qq ¨ Pr
´
a fixed Y P Y, Y Ď Xf,h

ˇ̌
ˇ EdpY q

¯

ě 1{43 ¨ Pr pDY P Y s.t. EdpY qq ,

where the last two inequalities above are due to the fact that the probability that some fixed
set Y P Y gets selected in Xf,h given that it survived d rounds of tabulation hashing is the same
across all sets in Y and, furthermore, it is exactly 1{43.

41

Surviving zero-sets. We now employ Corollary 25 to lower bound the probability that some
zero-set in Y survives d rounds of tornado tabulation. Note that we already have that the expected
number of zero-sets in Y that survive d rounds of tornado tabulation is

Θp|Σ|2 ¨ pp3 ´ 2{ |Σ|q { |Σ|qdq “ Ωpp3{ |Σ|qd´2q ,
which exhibits the desired dependency on d. The challenge with turning this expectation into a
probability is that the events of sets in Y surviving a round are not independent. To address this,
we decompose the event of some set Y surviving d rounds of tornado tabulation into the event
that some set survives the first two rounds of tornado tabulation and the event that this set also
survives the remaining d ´ 2 rounds:

Pr
´
rhpXf,hq is linearly dep.

¯
ě 1{43 ¨ Pr pDY P Y s.t. EdpY qq
ě 1{43 ¨ Pr pDY P Y s.t. E2pY qq ¨ Pr

´
Ed´2prhpY qrď c ` 2sq

ˇ̌
ˇ E2pY q

¯

“ 1{43 ¨ pp3 ´ 2{ |Σ|q { |Σ|qd´2 ¨ Pr pDY P Y s.t. E2pY qq .

To finish the argument and prove the main claim, we show the following:

Lemma 26. With constant probability, at least one set in Y survives the first two rounds of tornado
tabulation.

Proof. The proof proceeds in two stages: first, we will argue that, with constant probability, Θp|Σ|q
of the sets in Y survive the first round of tornado tabulation. These sets will have a specific structure
that guarantees that they then survive the second round of tornado tabulation independently.

Let T
p1q
1 , T

p1q
2 : Σ Ñ Σ be the two fully random hash functions involved in computing the first

derived character, and let C1 denote the event that T
p1q
1 p0q ‰ T

p1q
1 p1q. Note that C1 happens with

probability 1 ´ 1{ |Σ|. Conditioned on C1, all the sets in Y that survive have position 3 of Type

B or C. For any Y pc1, c2q P Y , position 3 is of Type B if T
p1q
2 pc1q “ T

p1q
2 pc2q and of Type C if

T
p1q
2 pc2q “ T

p1q
1 p0q ‘ T

p1q
1 p1q ‘ T

p1q
2 pc1q. These events are mutually exclusive and each occurs with

probability 1{ |Σ|.
We now show that, with constant probability, at least Θp|Σq| of sets in Y will survive and

futher, have position 3 be of Type B. We model this as a balls-into-bins game in which there

is a bin for each character α P Σ and the characters in Σ hash into bins using T
p1q
2 . We let Nα

denote the number of characters c P Σ with T
p1q
2 pc1q “ α, i.e., the occupancy of the bin for α. We

are interested in events in which Nα ě 2, because this implies that there exists at least one set

Y pc1, c2q P Y where T
p1q
2 pc1q “ T

p1q
2 pc2q “ α. The probability that this occurs is:

Pr pNα ě 2q “ 1 ´ Pr pNα “ 0q ´ Pr pNα “ 1q “ 1 ´ p1 ´ 1{ |Σ|q|Σ| ´ p1 ´ 1{ |Σ|q|Σ|´1 ,

since each character hashes independently and uniformly into the bins. Now, for each α P Σ,
define Iα to be the indicator random variable for whether Nα ě 2 and let I “ ř

αPΣ Iα. We will
argue that I “ ΘpΣq with constant probability. First note that the random variables tIαuαPΣ are
negatively associated since bin occupancies are negatively associated [17]. Let µ “ EpIq and note
that µ ě |Σ| {4 for |Σ| ě 2. As such, we can apply Chernoff’s bound and get that:

42

Pr pI ď |Σ| {8q ď Pr pI ď p1 ´ 1{2q ¨ µq ď e´µ{8 ď 1{2 ,

where the last inequality holds when |Σ| ě 23.

Now let Y 1 Ă Y denote the set of zero-sets constructed as such: we partition the bins into subsets

of the form tα,α1u where α ‘ α1 “ T
p1q
1 p0q ‘ T

p1q
1 p1q. The event that I ě |Σ| {8 implies that there

are at least |Σ| {16 such subsets where at least one bin, say α, has Nα ě 2. Now let c1 ă c2 be
two such characters that hash into the bin and add the zero-set Y pc1, c2q to Y 1. Note that every
subset of bins contributes at most one zero-set to Y 1. Furthermore, the sets in Y 1 have the following
properties:

• for any two distinct sets Y pc1, c2q, Y pc3, c4q P Y 1, it holds that tc1, c2u X tc3, c4u “ H, since
the characters c1, c2 hash into a different bin from c3, c4,

• if we denote the derived characters of Y pc1, c2q by rh3p0c1q “ x1 and rh3p1c1q “ x2 and similarly,
the derived characters of Y pc3, c4q by rh3p0c3q “ y1 and rh3p1c3q “ y2, we have further that
tx1, x2u X ty1, y2u “ H. This is due to the way the derived characters are computed: on

one hand, x1 “ T
p1q
1 p0q ‘ T

p1q
2 pc1q ‰ T

p1q
1 p0q ‘ T

p1q
2 pc3q “ y1 because T

p1q
2 pc1q ‰ T

p1q
2 pc3q and

similarly for x2 ‰ y2. On the other hand, x1 ‰ y2 because otherwise we would get that

T
p1q
2 pc1q ‘ T

p1q
2 pc3q “ T

p1q
1 p0q ‘ T

p1q
1 p1q, which would contradict the fact that Y pc1, c2q and

Y pc3, c4q were generated by different subsets of bins.

In this context, the events in which sets in Y 1 survive the second round of tornado tabulation are
independent. Specifically, let Y pc1, c2q P Y 1 be a set as before with derived characters rh3p0c1q “
rh3p0c2q “ x1 and rh3p1c1q “ rh3p1c2q “ x2. We distinguish between whether the newly derived

character is of Type A, B, or C. To this end, let T
p2q
1 , T

p2q
2 , T

p2q
3 : Σ Ñ Σ be the fully random hash

functions involved in its computation. Then position 4 is of Type A if

T
p2q
1 p0q ‘ T

p2q
3 px1q “ T

p2q
1 p1q ‘ T

p2q
3 px2q . (24)

Position 4 is of Type B if

T
p2q
2 pc1q “ T

p2q
2 pc2q , (25)

and of Type C if

T
p2q
1 p0q ‘ T

p2q
2 pc1q ‘ T

p2q
3 px1q “ T

p2q
1 p1q ‘ T

p2q
2 pc2q ‘ T

p2q
3 px2q . (26)

Similar conditions hold for some other Y pc3, c4q P Y 1, and moreover, each of them depends on
values that are chosen independently from the values in Y pc1, c2q. Specifically, the analogues
of Equation (24) for Y pc3, c4q depends on the lookup table values of y1 and y2, where y1 and y2
are the derived characters rh3p0c3q “ y1 and rh3p1c3q “ y2, respectively. As noted before, we know
that tx1, x2u X ty1, y2u “ H, and so the analogue of Equation (24) for Y pc3, c4q is independent of
Equations (24), (25), and (26). Similar arguments can be made for the other cases.

Now fix some instantiation Y 1 of Y 1 of size |Σ| {16 and let XY 1 denote the number of sets in Y 1
that survive the second round of tornado tabulation. We know from Lemma 24 that each set in

43

Y 1 survives the second round of tornado tabulation with probability p3 ´ 2{ |Σ|q{ |Σ| ě 2.75{16 for
|Σ| ě 8. Furthermore, each set survives this second round independently from the others. It follows
from Chernoff’s inequality that X is then tightly concentrated around its mean. In particular,

Pr
´
XY 1 ď 0.01 ¨ 1{8

ˇ̌
ˇ C1

¯
ď Pr

´
XY 1 ď p1 ´ 0.99q ¨ ErXY 1 s

ˇ̌
ˇ C1

¯

ď e´ErXY1 s¨0.992{2 ď e´2.75¨0.992{32 ď e´0.08 .

For our purposes, let XY 1 denote the random variable that counts the number of sets in Y 1 that
survive the second round of tabulation hashing. Conditioned on the fact that |Y 1| ě |Σ| {16, we
can always pick an instantiation Y 1 of Y 1 on which to use the above bound. We then get that:

Pr
´
XY 1 ě 0.01{8

ˇ̌
ˇ
ˇ̌
Y 1 ˇ̌ ě |Σ| {16 ^ C1

¯
ě 1 ´ e´0.08 .

To put it all together, let IY denote the event that there exists Y pc1, c2q P Y such that Z2pc1, c2q.
Recall that we defined the event C1 to be that T

p1q
1 p0q ‰ T

p1q
1 p1q. Then:

Pr pIYq ě Pr pIY ^ C1q
“

ˆ
1 ´ 1

|Σ|
˙

¨ Pr
´
IY

ˇ̌
ˇ C1

¯

ě
ˆ
1 ´ 1

|Σ|
˙

¨ Pr
´
IY ^ ˇ̌

Y 1 ˇ̌ ě |Σ| {16
ˇ̌
ˇ C1

¯

ě
ˆ
1 ´ 1

|Σ|
˙

¨ 1
2

¨ Pr
´
IY

ˇ̌
ˇ
ˇ̌
Y 1 ˇ̌ ě |Σ| {16 ^ C1

¯

ě
ˆ
1 ´ 1

|Σ|
˙

¨ 1
2

¨ Pr
´
XY 1 ě 1

ˇ̌
ˇ
ˇ̌
Y 1ˇ̌ ě |Σ| {16 ^ C1

¯

ě
ˆ
1 ´ 1

|Σ|
˙

¨ 1
2

¨ p1 ´ e´0.08q .

References

[1] Aamand, A., Das, D., Kipouridis, E., Knudsen, J. B. T., Rasmussen, P. M. R., and
Thorup, M. No repetition: Fast and reliable sampling with highly concentrated hashing.
Proc. VLDB Endow. 15, 13 (2022), 3989–4001.

[2] Aamand, A., Knudsen, J. B. T., Knudsen, M. B. T., Rasmussen, P. M. R., and
Thorup, M. Fast hashing with strong concentration bounds. In Proceedings of the 52nd
Annual ACM SIGACT Symposium on Theory of Computing (2020), pp. 1265–1278.

[3] Aamand, A., Knudsen, J. B. T., and Thorup, M. Load balancing with dynamic set of
balls and bins. In STOC ’21: 53rd Annual ACM SIGACT Symposium on Theory of Computing,
Virtual Event, Italy, June 21-25, 2021 (2021), S. Khuller and V. V. Williams, Eds., ACM,
pp. 1262–1275.

44

[4] Amble, O., and Knuth, D. E. Ordered hash tables. The Computer Journal 17, 2 (1974),
135–142.

[5] Arbitman, Y., Naor, M., and Segev, G. Backyard cuckoo hashing: Constant worst-case
operations with a succinct representation. In 51th Annual IEEE Symposium on Foundations of
Computer Science, FOCS 2010, October 23-26, 2010, Las Vegas, Nevada, USA (2010), IEEE
Computer Society, pp. 787–796.

[6] Bender, M. A., Kuszmaul, B. C., and Kuszmaul, W. Linear probing revisited: Tomb-
stones mark the demise of primary clustering. In 62nd IEEE Annual Symposium on Foun-
dations of Computer Science, FOCS 2021, Denver, CO, USA, February 7-10, 2022 (2021),
IEEE, pp. 1171–1182.

[7] Black, J. R., Martel, C. U., and Qi, H. Graph and hashing algorithms for modern
architectures: Design and performance. In Proc. 2nd International Workshop on Algorithm
Engineering (WAE) (1998), pp. 37–48.

[8] Celis, P., Larson, P.-A., and Munro, J. I. Robin hood hashing. In 26th Annual Sympo-
sium on Foundations of Computer Science (sfcs 1985) (1985), IEEE, pp. 281–288.

[9] Christiani, T., Pagh, R., and Thorup, M. From independence to expansion and back
again. To appear, 2015.

[10] Dahlgaard, S., Knudsen, M. B. T., Rotenberg, E., and Thorup, M. Hashing for
statistics over k-partitions. In 2015 IEEE 56th Annual Symposium on Foundations of Computer
Science (2015), IEEE, pp. 1292–1310.

[11] Dahlgaard, S., Knudsen, M. B. T., and Thorup, M. Practical hash functions for simi-
larity estimation and dimensionality reduction. In Advances in Neural Information Processing
Systems 30: Annual Conference on Neural Information Processing Systems 2017, December
4-9, 2017, Long Beach, CA, USA (2017), I. Guyon, U. von Luxburg, S. Bengio, H. M. Wallach,
R. Fergus, S. V. N. Vishwanathan, and R. Garnett, Eds., pp. 6615–6625.

[12] Dietzfelbinger, M., and auf der Heide, F. M. A new universal class of hash functions
and dynamic hashing in real time. In Automata, Languages and Programming, 17th Inter-
national Colloquium, ICALP90, Warwick University, England, UK, July 16-20, 1990, Pro-
ceedings (1990), M. Paterson, Ed., vol. 443 of Lecture Notes in Computer Science, Springer,
pp. 6–19.

[13] Dietzfelbinger, M., and Rink, M. Applications of a splitting trick. In Proc. 36th Interna-
tional Colloquium on Automata, Languages and Programming (ICALP) (2009), pp. 354–365.

[14] Dietzfelbinger, M., and Weidling, C. Balanced allocation and dictionaries with tightly
packed constant size bins. Theoretical Computer Science 380, 1 (2007), 47–68. Automata,
Languages and Programming.

[15] Dietzfelbinger, M., and Woelfel, P. Almost random graphs with simple hash functions.
In Proc. 25th ACM Symposium on Theory of Computing (STOC) (2003), pp. 629–638.

45

[16] Dietzfelbinger, M., and Woelfel, P. Almost random graphs with simple hash functions.
In Proceedings of the Thirty-Fifth Annual ACM Symposium on Theory of Computing (New
York, NY, USA, 2003), STOC ’03, Association for Computing Machinery, p. 629–638.

[17] Dubhashi, D., and Ranjan, D. Balls and bins: A study in negative dependence. Random
Structures & Algorithms 13, 5 (1998), 99–124.

[18] Flajolet, P., Éric Fusy, Gandouet, O., and Meunier, F. Hyperloglog: The analysis of
a near-optimal cardinality estimation algorithm. In In Analysis of Algorithms (AOFA) (2007).

[19] Fotakis, D., Pagh, R., Sanders, P., and Spirakis, P. G. Space efficient hash tables
with worst case constant access time. Theory Comput. Syst. 38, 2 (2005), 229–248.

[20] Greenberg, S., and Mohri, M. Tight lower bound on the probability of a binomial ex-
ceeding its expectation. Statistics & Probability Letters 86 (2014), 91–98.

[21] Heileman, G. L., and Luo, W. How caching affects hashing. In Proc. 7th Workshop on
Algorithm Engineering and Experiments (ALENEX) (2005), p. 141–154.

[22] Houen, J. B. T., and Thorup, M. Understanding the moments of tabulation hashing via
chaoses. In 49th International Colloquium on Automata, Languages, and Programming, ICALP
2022, July 4-8, 2022, Paris, France (2022), M. Bojanczyk, E. Merelli, and D. P. Woodruff,
Eds., vol. 229 of LIPIcs, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, pp. 74:1–74:19.

[23] Klassen, T. Q., and Woelfel, P. Independence of tabulation-based hash classes. In Proc.
10th Latin American Theoretical Informatics (LATIN) (2012), pp. 506–517.

[24] Knudsen, M. B. T. Linear hashing is awesome. In 2016 IEEE 57th Annual Symposium on
Foundations of Computer Science (FOCS) (2016), IEEE, pp. 345–352.

[25] Knuth, D. E. Notes on open addressing. Unpublished memorandum. See
http://citeseer.ist.psu.edu/knuth63notes.html, 1963.

[26] Li, P., Owen, A. B., and Zhang, C.-H. One permutation hashing. In Proc. 26thAdvances
in Neural Information Processing Systems (2012), pp. 3122–3130.

[27] Mitzenmacher, M., and Vadhan, S. P. Why simple hash functions work: exploiting
the entropy in a data stream. In Proc. 19th ACM/SIAM Symposium on Discrete Algorithms
(SODA) (2008), pp. 746–755.

[28] Pagh, A., and Pagh, R. Uniform hashing in constant time and optimal space. SIAM J.
Comput. 38, 1 (2008), 85–96.

[29] Pagh, A., Pagh, R., and Ružić, M. Linear probing with constant independence. SIAM
Journal on Computing 39, 3 (2009), 1107–1120. See also STOC’07.

[30] Pǎtraşcu, M., and Thorup, M. On the k-independence required by linear probing and
minwise independence. In Proc. 37th International Colloquium on Automata, Languages and
Programming (ICALP) (2010), pp. 715–726.

46

[31] Pǎtraşcu, M., and Thorup, M. The power of simple tabulation-based hashing. Journal
of the ACM 59, 3 (2012), Article 14. Announced at STOC’11.

[32] Pǎtraşcu, M., and Thorup, M. Twisted tabulation hashing. In Proc. 24th ACM/SIAM
Symposium on Discrete Algorithms (SODA) (2013), pp. 209–228.

[33] Siegel, A. On universal classes of extremely random constant-time hash functions. SIAM
Journal on Computing 33, 3 (2004), 505–543. See also FOCS’89.

[34] Thorup, M. Timeouts with time-reversed linear probing. In Proc. IEEE INFOCOM (2011),
pp. 166–170.

[35] Thorup, M. Simple tabulation, fast expanders, double tabulation, and high independence.
In FOCS (2013), pp. 90–99.

[36] Thorup, M., and Zhang, Y. Tabulation-based 5-independent hashing with applications
to linear probing and second moment estimation. SIAM Journal on Computing 41, 2 (2012),
293–331. Announced at SODA’04 and ALENEX’10.

[37] Wegman, M. N., and Carter, L. New classes and applications of hash functions. Journal
of Computer and System Sciences 22, 3 (1981), 265–279. See also FOCS’79.

[38] Zobrist, A. L. A new hashing method with application for game playing. Tech. Rep. 88,
Computer Sciences Department, University of Wisconsin, Madison, Wisconsin, 1970.

47

Appendix B

Hashing for Sampling-Based
Estimation

76

ar
X

iv
:2

41
1.

19
39

4v
1

 [
cs

.D
S]

 2
8

N
ov

 2
02

4

Hashing for Sampling-Based Estimation∗

Anders Aamand1, Ioana O. Bercea2, Jakob Bæk Tejs Houen3, Jonas Klausen1, and
Mikkel Thorup1

1University of Copenhagen {aa,jokl,mthorup}@di.ku.dk
2Kungliga Tekniska Högskolan bercea@kth.se

3Alipes ApS jakn@di.ku.dk

December 2, 2024

Abstract

Hash-based sampling and estimation are common themes in computing. Using hashing for
sampling gives us the coordination needed to compare samples from different sets. Hashing is
also used when we want to count distinct elements. The quality of the estimator for, say, the
Jaccard similarity between two sets, depends on the concentration of the number of sampled ele-
ments from their intersection. Often we want to compare one query set against many stored sets
to find one of the most similar sets, so we need strong concentration and low error-probability.

In this paper, we provide strong explicit concentration bounds for Tornado Tabulation hash-
ing [Bercea, Beretta, Klausen, Houen, and Thorup, FOCS’23] which is a realistic constant time
hashing scheme. Previous concentration bounds for fast hashing were off by orders of magnitude,
in the sample size needed to guarantee the same concentration. The true power of our result
appears when applied in the local uniformity framework by [Dahlgaard, Knudsen, Rotenberg,
and Thorup, STOC’15].

∗This work was supported by the VILLUM Foundation grants 54451 and 16582.

Contents

1 Introduction 1
1.1 Local Uniformity and Concentrated Selection . 1

1.1.1 Local Uniformity . 2
1.1.2 Concentration for Selection . 3
1.1.3 Threshold Sampling . 5
1.1.4 Relationship to Highly Independent Hashing 6

1.2 Roadmap of the Paper . 6

2 Applications to Hash-Based Sampling and Estimation 6
2.1 Hash-Based Sampling and Estimation Schemes . 7
2.2 Applying Concentration of Selection and Local Uniformity 10

3 Preliminaries: Tornado Tabulation Hashing 12

4 Technical Contribution 14
4.1 The Upper-Tail Bound (Theorem 4) . 14
4.2 High-Level Analysis for Lower-Tail Bound . 15
4.3 Experiment 1 . 18
4.4 Experiment 2 . 19
4.5 Roadmap of Technical Part of the Paper . 20

5 Layers 20
5.1 Main ingredients . 21
5.2 Preliminaries . 23
5.3 Bottom layers: Proof of Theorems 12 and 13 . 25
5.4 Regular Layers: Proof of Theorem 14 . 29
5.5 Non-Regular Layers: Proof of Theorem 15 . 31
5.6 No Big Layers . 34

6 Proof of Theorem 17 36
6.1 Preliminaries . 36
6.2 Defining an Obstruction on the Top Two Levels . 38
6.3 Confirming an Obstruction . 39
6.4 Union Bounds over All Obstructions . 41

7 Proof of Theorem 1 and Theorem 2 43
7.1 Proof of Theorem 35 . 43
7.2 Proof of Theorem 1 . 46
7.3 Subsampling and Proof of Theorem 2 . 47

8 Counting Zero Sets 49

A An Generalized Chernoff Bounds 56

1 Introduction

In designing and analyzing randomized algorithms, a common assumption is that we have access
to fully random hash functions. These ideal hash functions have beautiful theoretical properties
which turn out to be incredibly powerful in obtaining simple and reliable algorithms with strong
theoretical guarantees on their performance. Unfortunately, fully random hash functions cannot be
implemented in practice, and instead they serve as the objects of aspiration when studying practical
hashing schemes. In other words, they motivate the following high level goal.

Provide a simple and practical hashing scheme sharing the most powerful probabilistic properties
with fully random hashing.

An ambitious approach towards this goal is a framework introduced by [DKRT15] which they use
to solve a variety of problems that had thus far been out of reach for any realistic hashing scheme.
This framework combines two properties of the hash function, concentration bounds for selection
and a notion of local uniformity1. A hash function enjoying both of these properties, provides
powerful probabilistic guarantees for a realm of applications. We consider the Tornado Tabulation
hashing scheme from [BBK`23], a realistic, constant-time, hashing scheme, and demonstrate that
it fits this framework like a glove. For instance, our work shows how to implement the hashing
underlying most hash-based sampling and estimation schemes. Below, we describe the framework
from [DKRT15].

1.1 Local Uniformity and Concentrated Selection

The key point in the machinery of [DKRT15] is to combine concentration bounds for selection
with a certain local uniformity. We proceed to describe these notions. Local uniformity relates to
how the hash function h behaves on a subset of selected keys X from a large set of keys A with
|A| “ n. The selection of keys is done by looking at the binary representation of their hash values.
In particular, the bits of the hash value are partitioned into free and select bits such that a key is
selected if and only if its select bits match some fixed bitmask. As an example, one could consider
selecting all the keys whose hash values are strictly smaller than 16. In this case, the select bits
would be all but the rightmost 4 bits of the hash value and the bitmask would require that they
all be 0. In this work, we will use the same bitmask for each key in A.

With t select bits, we expect to select µ “ n{2t keys from our set A. Now suppose µ ď s{2,
where s is a space parameter (for now it suffices to know that the hashing scheme uses space Opsq
with the O-notation hiding a small constant). Within these parameters, local uniformity implies
that, with high probability, the free bits of the selected keys will be fully random. That is, if we
define hf to be the function mapping keys to their free bits, then local uniformity would imply that
hf is fully random on X. The above statement might appear a bit cryptic, but for understanding
it, it is useful think about the generation of the hash function in two phases. The first phase settles
the select bits of all keys and hence decides the selected set of keys X. The second phase generates
the free bits. The point now is that with high probability over the random process of phase one, the
free bits generated in phase two will be fully random for the keys in X. Importantly, the selection
is not known when implementing the hash function, but only a tool for the analysis. For example,
if we want to count distinct elements, the number of select bits in the analysis will depend on the
number of distinct elements in the input.

1The term local uniformity was coined later by [BBK`23]

1

As observed in [DKRT15], combining concentration bounds on the number of selected keys with
local uniformity provides a powerful analytical framework for getting theoretical guarantees as if
we had used fully random hashing for several important applications. Roughly speaking, for many
hashing-based sampling and estimation algorithms, it suffices to understand the distribution of keys
hashing to a small local region of the full hash range. The region is defined by the bitmask on the
select bits, so whether or not a key hashes to this region is determined by whether or not the select
bits of the hash value matches the bitmask. To see the similarity to fully random hashing, we view
the generation of the fully random function in the same two phases, first generating the select bits
and then the free bits. If we have strong concentration on the number of selected keys, we select
almost the same number as with the fully random hash function and the remaining free bits are
fully random in both cases. Now when the hash function is used in an algorithmic application,
the algorithmic behavior within the select keys could be quite complicated. Nonetheless, the local
uniformity framework ensures that, in a black box manner, we retain the same guarantees as if the
hashing had been fully random.

Naturally, the above framework is only as strong as its individual components. Weak concen-
tration bounds in the selection step will affect any application. Similarly, in order to be useful,
the hashing scheme should provide the local uniformity property with high probability for realistic
parameters. In the following two Sections 1.1.1 and 1.1.2 we discuss progress and challenges in
obtaining strong versions of local uniformity and concentrated selection. We further state our main
result in Section 1.1.2

1.1.1 Local Uniformity

In their original paper, [DKRT15] considered local uniformity with Mixed Tabulation hashing. We
will discuss tabulation-based hashing schemes in detail later. For the present section, it suffices
to know that in these schemes, keys from the universe rus are viewed as bit strings of length lg u
partitioned into a small number, c, of characters each consisting of plg uq{c bits. Defining s “ u1{c,
the hash functions are defined through a small constant number of independent and fully random
look-up tables of size s. In particular, the total space usage becomes Opsq where the O-notation
hides a small constant.

Using c ` 2b ` 2 such look-up tables, [DKRT15] obtained local uniformity with probability at
least

1´
ˆ
Oplog sqc

s

˙b

.

Above, the O-notation hides constants that are exponential in c and b. For space s Ñ 8, this is
interesting, but for more reasonable values of s, the above error probability bound may be above 1.

Recently, [BBK`23] introduced Tornado Tabulation, coining the term local uniformity in pass-
ing. Using c ` b ` 2 tables of size s, they obtained local uniformity with the much more useful
explicit probability bound of at least

1´ p24p3{sqb ` 1{2s{2q . (1)

Note that this is a quite strong guarantee. For example, if s “ 216, we only need a few extra
look-up tables before the error probability becomes extremely small. In fact, they proved that local
uniformity holds even when the selection is done according to the hashes of additional fixed query
keys (e.g., select keys that have the same rightmost 4 bits as some given query key q). They also

2

show that their analysis is essentially tight in the sense that the additive p3{sqb term is necessary.
While minor improvements of the constant 24 might be possible, their result arguably provides us
with a hashing scheme with a very satisfactory local uniformity guarantee. Naturally, the next
question is whether it provides strong concentration bounds for selection.

1.1.2 Concentration for Selection

In getting concentration bounds on the number of selected keys, we again aspire to emulate the
fully random setting. In this setting, the most basic tool we have available is the classic Chernoff
bound which gives that if X is the set of selected keys, then for any δ P r0, 1s,

Prr|X ´ µ| ě δµs ă 2 expp´µδ2{3q. (2)

The concentration bounds we discuss with practical hashing schemes will have the form

Prr|X ´ µ| ě δµs ă 2 expp´µδ2{Fq ` P. (3)

We shall refer to F as the exponent factor and to P as the added error probability. The exponent
factor F plays a major role in this paper and is our main measure of the quality of the concentration
bound. To see why, let us for a moment ignore the additive error probability P . Then F becomes
a linear factor in the expected number of keys we need to select in order to stay within a desired
relative error δ. Flipping the argument on its head, if we want the concentration bound to hold

with probability 1 ´ Q, we obtain the relative error bound δ “
b

F logp1{Qq
µ . If F is large, the

framework in [DKRT15] becomes weak since the corresponding fully random experiment has a very
different number of keys. As we will see shortly, all past work on practical hashing with general
concentration bounds have suffered from the same issue, namely that F is a large constant.

Surprisingly, as shown in [BBK`23], there is an ’automatic’ way of deriving an upper tail
Chernoff bound from the property of local uniformity. Namely, if the selection of X is carried out
using Tornado Tabulation hashing, then

Prr|X| ą p1` δqµs ă expp´µδ2{3q ` 24p3{sqb ` 1{2s{2 . (4)

Thus (so far) Tornado Tabulation provides the peculiar guarantee of local uniformity combined
with upper tail bounds. This suffices for many hash table applications where we only worry about
hashing too many keys in the same bucket and where our particular concern is the number of keys
colliding with a given query key. Indeed, one of their main applications was hash tables with linear
probing, for which they proved Tornado Tabulation hashing behaves similarly to fully random
hashing. However, for statistical estimation problems and in many algorithmic applications, we
need concentration, not just upper tail bounds. We next discuss past work and state-of-the-art in
obtaining such (two-sided) concentration bounds.

Hashing with Strong Concentration Designing a practical hashing scheme with strong con-
centration is an important and well-studied problem within the field of hashing. In the independence
framework of Wegman and Carter [WC81], we say that the hash function h is k-independent if ev-
ery k keys are mapped independently and uniformly into the hash range. We know from [SSS95]
that in this case, the number of selected keys is concentrated as

Prr|X ´ µ| ě δµs ă 2 expp´µδ2{3q ` expp´k{2q. (5)

3

In particular, this implies that for some desired error probability P , we would need to set k ě
2 lnp1{P q. We could implement k as a degree k ´ 1 polynomial, but this gets slow when k is large,
and in particular, this is super-constant when P “ op1q.

A completely different approach to obtaining strong concentration bounds is to use tabulation
hashing as pioneered by Patrascu and Thorup [PT12]. They considered simple tabulation hashing,
a scheme dating back to Zobrist [Zob70]. Given the space parameter s, where sc “ u, simple
tabulation hashing uses c independent and fully random tables of size s and computes a hash value
by doing c table lookups. With tables stored in fast cache, this is faster than computing a degree-2
polynomial. Patrascu and Thorup [PT12] proved the following Chernoff-style concentration bound
using simple tabulation hashing. Assuming µ ď n1{p2cq ď ?s, for any δ ď 1:

Prr|X ´ µ| ě δµs ă 2 expp´µδ2{Fq ` 1{nγ . (6)

where F depends exponentially on c and γ. In the Chernoff bound for fully random hashing (2),
we had exponent factor 3 and no added error probability.

Getting better concentration bounds has been a main target for research in tabulation-based
hashing [PT13, AKK`20, HT22]. For simple tabulation, [AKK`20] removed the requirement that
µ ď n1{p2cq but had an added error probability of npγ , so the sampling probability p had to be
polynomially small. They also introduced tabulation-permutation hashing, which roughly doubled
the number of tables, but removed the restriction on µ and reduced the added error probability to
1{uγ . That is, for any δ ď 1

Prr|X ´ µ| ě δµs ă 2 expp´µδ2{Fq ` 1{uγ . (7)

The same bound was achieved for mixed tabulation in [HT22], which further described the depen-
dence of F on c and γ as F “ pc2γ Cqc, where C is a large unspecified universal constant. The
work of [BBK`23] provided no lower tail bound, but Tornado Tabulation inherits the two-sided
concentration in (7) from [HT22].

Our Technical Contribution. In this paper, we provide strong explicit lower tail bounds for
Tornado Tabulation Hashing with c` b` 3 tables of size s. With this final piece of the puzzle, we
get a hashing scheme fitting the powerful framework in [DKRT15] with explicit bounds. Below, X
is still the set of selected keys as described above and µ “ ErXs.
Theorem 1. For any b ě 1 and c ď ln s, if s ě 216 ¨ b2, and µ P rs{4, s{2s. For any δ ą 0,

Prr|X| ă p1´ δqµs ă 3 exp

ˆ´δ2µ
7

˙
` pc` b` 1q lnpsq ¨

˜
49

ˆ
3

s

˙b

` 3

ˆ
1

2

˙s{2¸
. (8)

We note again that the added error probability drops rapidly, even with a small choice of b.
The proof of this theorem appears in Section 7.2. The concrete value of F “ 7 is an artifact of our
analysis, and it is likely that a more careful argument will show that F is even closer to the 3 in (2).
Additionally, we will see in the next section that the result can be bootstrapped to give F “ 3 at
the cost of a constant blow-up in space. The proof of our lower tail bound requires significantly
more work than the proof of the upper tail bound in (4) and several completely new ideas. The
fundamental challenge is that in contrast to upper tail bounds, lower tail bounds must argue about
the probability distribution of the keys that are not selected. Namely, standard proofs of the

4

Chernoff upper-bound use the Taylor expansion, of which each term represents the probability that
some fixed set of keys is selected. Thanks to local uniformity, the selection of these fixed keys can
be viewed as fully random, so bounding these probabilities is straightforward. In contrast, for the
lower tail, the hash values of non-selected keys are far from fully random.

1.1.3 Threshold Sampling

To illustrate the power of the framework of [DKRT15] combined with strong guarantees on local
uniformity and concentration of selection, we here apply it to the simple but fundamental algo-
rithmic primitive threshold sampling. For threshold sampling, we view the hash values as numbers
in r0, 1q, and given some sampling probability p P r0, 1s, we sample a key x P A if hpxq ă p. We
would like the set of sampled keys X to accurately represent A in the sense that |X|{p is a reliable
estimator for |A|.

To apply the framework of [DKRT15], we require that µ “ ErXs “ p|A| ! s. For the analysis
we pick the smallest t such that n{2t ď s{2. We then use the t most significant bits as select bits,
asking for all of them to be zero. It follows that the sampled keys are all selected, and we can
view the threshold sampling as a supsample. By local uniformity, this subsample is fully random
and we can apply the classic Chernoff bound (2). When s is large compared to µ, the deviation
of Theorem 1 diminishes in comparison to the deviation of the fully random threshold sampling
and this allows us to bootstrap the theorem to achieve F “ 3. As in the previous section, in the
theorem below, we again consider Tornado Tabulation hashing with c` b` 3 look-up tables of size
s.

Theorem 2. Let h : rus Ñ r2ls be a Tornado Tabulation hash function with s ě 216b2 and c ď lnpsq,
A a set of keys, and X “ tx P A | hpxq ă pu for some p P r2ls. Suppose that µ “ ErXs ď s{278.
Then for any δ ă 1, it holds that

Prr||X| ´ µ| ą p1` δqµs ă 5 exp

ˆ´δ2µ
3

˙
` pc` b` 2q lnpsq ¨

˜
49

ˆ
3

s

˙b

` 3

ˆ
1

2

˙s{2¸
.

The proof of this theorem is given in Section 7.3. Comparing to the concentration bounds
provided by past work (discussed in the previous section), our new exponent factor F “ 3 is smaller
by several orders of magnitude. Recall that the bounds in [AKK`20, HT22] had F “ pc2γCqc where
C is a large unspecified constant and c is such that sc “ u.

The requirement that s ě maxp216b2, 278µq may seem disappointing but for large-scale applica-
tions it is not a big concern. The point is that we think of the Tornado Tabulation hash function h
as a single central hash function used in the construction of millions of sketches. Storing each sketch
requires space Ωpµq, so the space used for storing the hash function is insignificant. The setting
with many sketches also emphasizes the importance of having high probability bounds since we can
then use a union bound to prove that the sketches all behave well simultaneously. Additionally,
note that when s ě maxp216b2, 278µq, then the added error probability decays very quickly with
increasing b, and we thus require fewer look-up tables for the hash function for a desired added
error probability. Finally, the constant 278 is again an artifact of the analysis which could likely
be reduced significantly.

5

1.1.4 Relationship to Highly Independent Hashing

A natural question is how well the classic k-independence framework byWegman and Carter [WC81]
fits into the local uniformity framework by [DKRT15]. First of all, it is clear that to obtain the
property of local uniformity, we need space at least s{2 for the hash function. Indeed, in expectation
s{2 keys will be fully random over the free bits. In particular, to employ the k-independence scheme,
we would need k ě s{2. If we implement the hash function as a degree k´1 polynomial, this becomes
prohibitively slow. As an alternative, we can use the highly independent hashing introduced by
Siegel [Sie04]. In this setting, Thorup’s [Tho13b] double tabulation provides a simpler and more
efficient implementation of such highly independent hashing schemes. Unfortunately, with space
Opsq, the independence achieved by this construction is Ops1{p5cqq which far from suffices for local
uniformity. Moreover, with realistic parameters in the probabilistic guarantees, double tabulation
is too slow for practical applications (see the discussions and experiments in [AKK`20]).

Even with a hypothetical fast highly independent hashing scheme at hand, we would run into
further issues. First, to fit the local uniformity framework, we would need two independent such
hash functions, one for the select bits and one for the free bits. This is a bigger issue than it may
seem, since the select bits appear only in the analysis and are not chosen by the algorithm design.
In fact, for all of the applications in Section 2, the select bits depend on the input and for some
of the analyses of these applications, we need to apply the local uniformity framework over several
different choices of select bits.

Finally, one may ask if the locally uniformity framework is necessary. For instance, for the
threshold sampling in Section 1.1.3, it suffices to use a 2 lnp1{P q-independent hash function to get
additive error probability P in eq. (5). There are two points to make in regards to this. First,
in order to obtain high probability error bounds, say n´γ , we must have k “ 2γ lnpnq and both
k-independent hashing as well as Thorup’s construction [Tho13b] would be prohibitively slow.
Secondly, for some of the applications we will discuss in Section 2 (e.g., the important Vector-k
Sample), independence below k has no proven guarantees.

1.2 Roadmap of the Paper

In Section 2, we discuss hash based sampling and estimation schemes and how they fit in the local
uniformity framework. In Section 3, we present the necessary preliminaries on Tornado Tabulation
hashing. In Section 4, we discuss our main technical contribution and steps we need for the proof
of Theorem 1. We will include a second roadmap by the end of Section 4 for an overview of where
we take these steps.

2 Applications to Hash-Based Sampling and Estimation

Below in Section 2.1 we discuss different types of hash-based sampling and estimation schemes,
starting from the most basic, and moving to those with the highest demand on the hash function.
In each case, we first assume that the hash function h is fully random. Having seen all these
applications of full randomness, we then argue in Section 2.2, in a black-box fashion, that Tornado
Tabulation hashing performs almost as well as a fully random hash function.

6

2.1 Hash-Based Sampling and Estimation Schemes

Our starting point is the fundamental threshold sampling of Section 1.1.3. We review it again here.

Threshold Sampling. The most primitive form of hash-based sampling and estimation takes a
threshold probability p P r0, 1s and samples a key x if hpxq ă p. For any key set A Ď rus, let SppAq
be keys sampled from A. With X “ |SppAq| and µ “ ErXs “ |A|p, by standard Chernoff bounds,
for δ ď 1, we have that

Prr|X ´ µ| ě δµs ă 2 expp´µδ2{3q. (9)

Thus, X{p “ |SppAq|{p is a strongly concentrated estimator of |A|. One advantage to storing SppAq
is that SppAq can then be used to estimate the intersection size |A X B| as |SppAq X B|{p, given
any other set B. Having exponential concentration in particular is critical if we want low error
probability bounds for a union bound over many events. For example, if we store SppAiq for many
sets Ai and want to estimate the maximal intersection size with B, then it is important that none of
the individual intersection estimates are too large. So far, however, we have not seen the advantage
of hash-based sampling over independent sampling.

Benefits of Hash-Based or Coordinated Sampling. There are two main benefits to using
hashing to coordinate the sampling. One is if the set of keys appear in a stream where a single key
may appear multiple times. Then we can easily maintain a sample of the distinct keys. Another
benefit, more critical to this paper, is that if we have sampled from two sets A and B, then we
can compute the sample of their union A Y B. For threshold sampling, this is done simply as
SppAYBq “ SppAqYSppBq, and likewise for the intersection as SppAXBq “ SppAqXSppBq. Note
that if we had instead sampled independently from A and B, then keys from the intersection would
be too likely to be included in SppAq Y SppBq and less likely to be included in SppAq X SppBq.

Bottom-k Sampling and Order Statistics on Hash Values. With fully random hashing,
the hash values from a set A are just a uniformly distributed set hpAq of |A| hash values from p0, 1q.
Let hp1qpAq, . . . , hp|A|qpAq denote these hash values in sorted order. Assuming k ď |A|, we know
from order statistics (see, e.g., [Dav81]) that Er1{hpk`1qpAqs “ |A|{k, so we can use k{hpk`1qpAq as
an estimator for |A|. By definition, p ą hpk`1qpAq ðñ |SppAq| ą k. Therefore

k{hpk`1qpAq ă p1´ δq|A| ðñ k{pp1´ δq|A|q ă hpk`1qpAq ðñ |Sk{pp1´δq|A|q| ą k.

Here Er|Sk{pp1´δq|A|q| “ k{p1 ´ δq, so lower tail bounds for |Sp| with p “ k{pp1´ δq|A|q imply
similar lower tail bounds for k{hpk`1qpAq, and likewise for upper tail bounds. This argument for
concentration of 1{hpk`1q around |A|{k is essentially taken from [BJK`02], except that they use
1{hpkq which is slightly off in the sense that its mean is |A|{pk ´ 1q.

As in [CK07], we can also define the bottom-k sample of A as the subset SkpAq with the
k smallest hash values. Together with SkpAq, we can store pkpAq “ hpk`1q, and then SkpAq “
SpkpAqpSq. Note that if we also have the bottom-k sample of a set B, then we can easily create the

bottom-k sample for their union as SkpAYBq “ SkpSkpAq YSkpBqq. Note also that the bottom-1
sample is identical to Broder’s famous MinHash [Bro97, BCFM00].

7

Frequency and Similarity. Based on the above observations, we now discuss a very powerful
analysis for frequency and similarity estimation assuming sampling based on a fully random hash
function. Very generally, given a set A, we assume that the sampling process is given the set of
(distinct) hash values hpAq and selects a subset Y of these hash values. It then returns the set of
keys S “ tx P A | hpxq P Y u . For threshold sampling, the selected hash values are those which
hash below the threshold sampling probability, and for bottom-k it is the k smallest hash values
that are selected.

With fully random hashing, for a given set A and a given set hpAq of hash values, the set S is
a fully-random sample without replacement from A. As a consequence, if B is a subset of A, then
the frequency of B can be estimated as |B X S|{|S|. For a given sample size |S|, this estimator is
the sum of negatively correlated 0-1 variables (does each sample belong to B or not), and all the
standard Chernoff bounds, e.g., (9) hold in this case. For bottom-k samples, for B Ď A, we can
use |B X SkpAq|{hpk`1qpAq to estimate |B|. This estimator is unbiased as proved in [CK07], and it
is concentrated thanks to the above concentrations of |B X SkpAq| and 1{hpk`1qpAq.

We are pointing out this analysis because we could do something more lossy using a union bound
over different concentration bounds, as described in [Tho13a]. Assuming fully random hashing, we
get the clean arguments presented above using the fact that the samples are independent. In a
black-box fashion, we are going to argue that Tornado Tabulation hashing is similar to fully random
hashing for frequency estimation, hence the above type of reasoning applies.

k-Partition-Min and Distinct Elements. We now discuss a very powerful and efficient way of
creating sketches based on k-partitions. We use the first log k bits of the hash value to partition the
keys between k buckets. We refer to these log k bits of the hash values as the bucket index, and the
remaining bits as the local hash value. The idea is to look at the smallest local hash value within
each bucket separately. We generally refer to this approach as k-Partition-Min, and it dates back
at least to Flajolet and Martin [FM85] who used it for estimating the number of distinct elements.
The more recent popular HyperLogLog algorithm [FEFGM07] is a compressed version, in that it
only stores the number of leading zeros in the smallest local hash value.

The HyperLogLog sketch is very easy to maintain and update. When a new key comes to the
bucket, we just have to check if it has more leading zeros than the current coordinate. This is faster
than using a bottom-k approach, where we would need to keep a hash table over the sampled keys
in order to check if the incoming key is new or a repeat. Likewise, given the HyperLogLog sketches
from two sets, it is easy to construct the sketch of their union: for each bucket, we just have to find
the maximal number of leading zeros from the two input sets.

Computing the estimate of the number of distinct elements from the HyperLogLog sketch is
complicated and the analysis is involved even if we assume fully random hashing (see [FEFGM07]).
Luckily, we will be able to claim that Tornado Tabulation hashing performs similarly in a black-box
fashion, without needing to understand the details of the estimator. All we need to know is that it
increases monotonically in each coordinate in the HyperLogLog sketch. Indeed, with a fixed hash
function, it is clear that the coordinates of the HyperLogLog sketch can only increase as more keys
are added, and hence so should the estimate of the number of distinct keys.

Vector-k Sample. Another powerful application of k-Partition-Min is when we store, for each
bucket, the key with the smallest local hash value, i.e., the “min-key”. For now, we assume that all

buckets are non-empty. For a set A, we use S
~k to denote the vector of these min-keys. This is the

8

One-Permutation Hashing scheme of [LOZ12]. If the hash function is fully-random, then the keys

in S
~kpAq are sampled uniformly, without replacement, just like the samples in the bottom-k sample

SkpAq. One important difference between the vector-k and bottom-k sample is that the vector-k
sample is easier to update and maintain, the same as in the case of HyperLogLog: when a key is
added, we only need to go to the bucket it hashes to and compare it with the current min-key. In
contrast, with bottom-k, we would need to maintain a priority queue.

A more fundamental difference appears when we want to estimate the similarity of two sets A

and B. Then we only have to compare S
~kpAq and S

~kpBq coordinate-wise: the Jaccard similarity is

estimated as
řk´1

i“0

”
S
~kpAqris “ S

~kpBqris
ı
{k. Comparing coordinate-wise is necessary for some very

important applications. As described in [LSMK11], it implies that we can estimate the similarity
between sets as a dot-product and use this in Support Vector Machines (SVM) in Machine Learning.
To get a standard bit-wise dot-product, [LSMK11] suggest that we hash the min-key in each bucket
uniformly into t01, 10u (we could earmark the least significant bit of the hash value of the min-key
for this purpose). If the min-keys in a coordinate are different, then with probability 1/2, they
remain different, so dissimilarity is expected to be halved in this reduction. More importantly,
more similar sets are expected to get larger dot-products, and this is all we need for the SVM
applications. Mathematically, a cleaner alternative is to use the least significant bit to map the

min-key in a bucket to
!

´1?
k
, 1?

k

)
. Now, in expectation, the dot-product is exactly the Jaccard

similarity.
Having a vector sample is also important for Locality Sensitive Hashing (LSH) [IM98] as ex-

plained in detail in [DKT17]. The point is that using k-Partition-Min to compute a k-vector sample
replaces the much slower approach to computing the MinHash [Bro97, BCFM00] with k indepen-
dent hash functions, using the min-key with the ith hash function as the ith coordinate. With
this kˆMinHash, we need to compute k hash values for every key while k-Partition-Min requires
only one hash computation per key. This makes a big difference if k is large, e.g., k “ 10, 000 as
suggested in [Li15].

A caveat of k-Partition-Min is that if bucket i is empty, then the ith sample is undefined. The
“error” that some bucket is empty happens with probability at most P if |A| ě k lnpk{P q. It was
shown in [DKT17] that we can fill the holes with error probability at most P by hashing indexed
keys from rjs ˆ A where j|A| ě maxt|A|, k lnpk{pqu. The total number of hash computations
are then at most maxt|A|, 2k lnpk{P qu, which is still much better than the k|A| hash computations
needed for kˆMinHash. The resulting vector-k sample becomes a mix of sampling with and without
replacement. As proved in [DKT17], assuming fully random hashing, the number of samples from
any subset of A will still be exponentially concentrated as in our Chernoff bound (9).

We note that in the applications of vector-k sample, we are typically comparing one set with
many sets, to find the most similar set. Concentration is crucial to making sure that the most
similar sample is not just similar due to noise.

The fundamental challenge in implementing k-Partition-Min with a realistic hash function is
that we want the min-keys of different buckets to act as if they were independent except for being
without replacement. In the q-independence paradigm of Wegman and Carter [WC81], it is not
clear if any q less than |A| would suffice. Nevertheless, Tornado Tabulation hashing will make all
the applications work similarly to fully-random hashing.

We will now discuss how we can apply local uniformity and the concentration bounds to sampling
and frequency estimation. Some of the applications are taken from [DKRT15], but we review them

9

here to underline the power of Theorem 1.

2.2 Applying Concentration of Selection and Local Uniformity

We next discuss the power of the local uniformity framework by [DKRT15] when employed with a
hashing scheme with strong concentration for selection and local uniformity guarantees.

Concentration Bounds with Subsampling. We have already discussed the concentration
bounds that we obtain for threshold sampling using the local uniformity framework in Section 1.1.3
and refer the reader to Theorem 2

Selecting Enough Keys for Applications. The original paper [DKRT15] did not introduce
any new concentration bounds, but below we review how they used concentration bounds and local
uniformity to analyze the more complex sampling and estimation.

The basic requirement is that the selected keys, with high probability, should contain all keys
relevant to the final estimators (for threshold sampling, this was trivial). For instance, let us
consider bottom-k sampling. As for threshold sampling, we will select keys based on 0s in their t
most significant bits. If this leads to selection of more than k keys, then we know that we have
selected all keys and hash values relevant to the estimators. If s ě 5k and t is the smallest value for
which µ “ n{2t ď s{2, then µ ě s{4 “ 1.25k. Thus, using our concentration bound in Theorem 1,
we get that, with high probability, we select more than k keys.

For k-partition-min, the selection is a bit more subtle. We select keys based on 0s in the t most
significant positions of their local hash value. We call such a hash value “locally small” regardless
of the bucket index. With high probability, we want the smallest hash value in every bucket to be
locally small. If we select more than k lnpk{P q locally small keys, then, with probability at least
1´ P , we get one in each bucket. Thus we must pick s ě 5k lnpk{P q. To apply Theorem 1, we of
course further have to assume that s ě 216b2.

The extra factor lnpk{P q for vector-k sampling may seem disappointing, but as explained in
[DKT17], we do not know of any other reasonable way to implement vector-k sampling if we want
exponential concentration bounds. We already mentioned the issue in using Wegman and Carter’s
independence paradigm [WC81]. Another tempting approach would be to use one hash function
to split the keys between buckets, and then use an independent hash function for each bucket.
However, the best implementation of MinHash uses tabulation [DT14], and then we would need k
sets of tables yielding much worse space overall. Again our contribution is that we get an explicit
and reasonable constant in the exponential concentration.

We finally note that while the Tornado Tabulation hash function may dominate the space of the
streaming algorithm producing the vector-k sample of a given set, the general point is to produce
vector-k samples for many sets, and use them as high-quality compact sketches in support vector
machines and locality sensitive hashing.

Coupling for Counting Keys. We now discuss a stochastic dominance argument where we
couple a Tornado Tabulation hashing experiment on a set A with a fully random hashing experiment
on a slightly different set A1. Let us first consider the case of counting (distinct) keys, as in
HyperLogLog applied to k-partition-min. Let h be the tornado hash function and h̃ be the fully-
random hash function. Assuming that distinct keys hash to distinct values, the estimator only

10

depends on the set of hash values. Furthermore, as described above, we have made the selection
such that with high probability, the estimator only depends on the hash values of the selected keys.

Now, for both hash functions, we first compute the select bits of the hash values and let
L denote the set of hash values matching the bitmask. This defines the sets of selected keys
X “ tx P A | hpAq P Lu and X 1 “ tx P A1 | h̃pA1q P Lu. Next, we perform a maximal matching
between keys in X and X 1, thus matching all keys in the smaller set. Since the free bits of the
hash values of the selected keys are fully random in both cases, we can couple the hash values of
matched pairs of keys so that matched keys have the same free bits in both experiments. As a
result, we end up with the following relations

|X| ď |X 1| ðñ phpAq X Lq Ď ph̃pA1q X Lq ùñ HLLpA,hq ď HLLpA1, h̃q
|X| ě |X 1| ðñ phpAq X Lq Ě ph̃pA1q X Lq ùñ HLLpA,hq ě HLLpA1, h̃q.

Above HHL is the HyperLogLog estimator [FEFGM07] applied to the k-Partition-Min sketch.
All we need to know is that it is increasing in the number of leading zeros of the min-key in each
bucket. We assumed that hpAq XL contained min-keys from each bucket. Therefore, if |X| ď |X 1|,
then we get that HLLpA,hq ď HLLpA1, h̃q. If, on the other hand, |X 1| ď |X|, then ph̃pA1q X Lq
could be missing keys in some bucket. Since hpAq X L has keys in these buckets, hpAq has at
least t leading zeros while h̃pA1q has ă t leading zeros in these buckets. Therefore implying that
HLLpA,hq ě HLLpA1, h̃q. In other words, the estimator from HLLpA1, h̃q would be lower because
it has seen higher hash values h̃pA1q.

The question now is how to set up the parameters such that the Tornado Tabulation hashing
estimator is smaller than the fully random estimator with high probability. For this, we pick A1 so
large that, with high probability, we have |X 1| ě |X|. For some target error probability OpP q and
µ1 “ Er|X 1|s “ |A1|{2t, it would be sufficient to have that

µ`a
3µ lnp1{P q ď µ1 ´a

2µ1 lnp1{P q .
This is using that we have the Chernoff upper-tail bound from (8) on |X| and the classic Chernoff
lower-tail bound on |X 1|. Assuming µ1 ď 2µ and µ ě s{4, we see it suffices that the following holds

µ1 ě µ
´
1`a

12 lnp1{P q{s`a
16 lnp1{P q{s

¯
,

which in turn holds if
µ1 ě µ

´
1` 8

a
lnp1{P q{s

¯

Since µ “ |A|{2t and µ1 “ |A1|{2t, this means that if we want |X| ě |X 1| to hold with probability
2P ` 24p3{sqb ` 1{2s{2, it suffices to compare Tornado Tabulation hashing on A with fully-random
hashing on A1 with

|A1| “
Q
|A|

´
1` 8

a
lnp1{P q{s

¯U
.

When we want |X 1| ď |X|, we need to employ our new lower-tail bound from Theorem 1 on |X| in
combination with the classic Chernoff upper-tail bound on |X 1|. Thus we want

µ´a
7µ lnp1{P q ě µ1 `a

3µ1 lnp1{P q .
Assuming µ ě s{4, we see it suffices that

µ1 ď µp1´a
28 lnp1{P q{s´a

12 lnp1{P q{sq,

11

which in turn holds if
µ1 ď µp1´ 9

a
lnp1{P q{sq

Thus for |X 1| ď |X| to hold with probability 3P ` 24p3{sqb` 1{2s{2, it suffices to compare Tornado
Tabulation hashing on A with fully-random hashing on A1 where

|A1| “
Y
|A|

´
1´ 9

a
lnp1{P q{s

¯]
.

Coupling for Estimating Frequency. Finally, we consider the problem of estimating frequency,
again using a coupling argument. This was discussed as a key example in [DKRT15], but using only
O-notation (hiding large exponential constants). To get more precise bounds, one has to employ
the same carefulness as we did above for counting keys.

Here, we have a set A of red and blue keys and we want to estimate the frequency of the least
frequent color since this implies the best frequency estimate for both colors. Assume without loss
of generality that red is the least frequent color. A main point in [DKRT15] is that we perform
selection on two different levels. If we have r red keys and n keys in total in A, then we let a be the
smallest number such that r{2a ď s{2 and t the smallest number such that n{2t ď s{2. We then
first select based on the first a select bits (as a pre-selection). In expectation, this leads to between
s{4 and s{2 pre-selected red keys. For an upper bound on the Tornado Tabulation estimator, we
want more pre-selected red keys in A1 (using fully random hashing) than in A (using Tornado
Tabulation hashing). On the red keys, all remaining bits are fully random, so we can use the same
coupling as we did above, just for counting. We note here that the pre-selection is essential if we
want to get good bounds when the frequency of the red keys is very small.

Next, we settle the following t´ a select bits. At this point, we drop all pre-selected keys that
weren’t also selected in this second step (in effect, we do a sub-selection). From the perspective of
the red keys, this sub-selection is fully random on and so the previous coupling ensures that The
argument for the lower bound is symmetric: we decrease the number of red keys in A1 and increase
the total number of keys by adding more blue keys, using the same parameters as we did in the
previous subsection where we were counting distinct keys.

3 Preliminaries: Tornado Tabulation Hashing

We now review the formal definition of tornado tabulation hashing, as well as the relevant technical
results from Bercea et. al [BBK`23]. First, we recall that a simple tabulation hash function [Zob70,
WC81] is a function from some universe Σc to some range of hash values R “ r2rs. Namely, we view
the keys as being a concatenation of c characters from some alphabet Σ. In fact, our space parameter
from the introduction is s “ |Σ|. We use x1, . . . , xc to denote these characters, thus x “ x1 . . . xc.
A simple tabulation hash function h associates with each character position i “ 1 . . . c a table
Ti : Σ ÝÑ R that maps each character to a fully-random hash value. These tables are independent
across different character positions. Given a key x P Σc, the final hash value of x is computed as
an exclusive or of all the individual character lookups:

hpxq “ T1rx1s ‘ ¨ ¨ ¨ ‘ Tcrxcs .
A tornado tabulation hash function uses multiple such simple tabulation hash functions, and

can be thought of as a two-step process. In the first step, it extends the original key x P Σc

12

into a derived key rhpxq “ rx P Σc`d, where d ě 0 is an internal parameters that controls the
final probability bounds we obtain. We refer to d as the number of derived characters. Namely,
the first c ´ 1 characters of rx match x: if rxi denotes the ith character of x̃, then rxi “ xi for
all i ă c. To compute x̃c, we use a simple tabulation hash function h0 : Σc´1 Ñ Σ and set
x̃c “ xc ‘ h0prx1 ¨ ¨ ¨ rxc´1q. This character is often referred to as being twisted. For the remaining
characters x̃c`1, . . . , x̃c`d (the derived characters), we employ a series of simple tabulation hash
functions rhi : Σc`i´1 ÝÑ Σ and set

rxc`i “ rhi prx1 ¨ ¨ ¨ rxi`c´1q for i “ 1 . . . d .

The last step in computing the hash value is to do one final round of simple tabulation hashing
on the derived key. We denote this last round by ph : Σc`d ÝÑ R. Then hpxq “ phprxq.

Below is the C-code implementation of tornado tabulation for 64-bit keys, with Σ “ r216s c “ 4,
d “ 3, and R “ r264s. The function takes as input the key x, and c` d fully random tables of size
Σ, containing 128-bit values.

INT64 Tornado (INT64 x , INT128 [7] [6 5 5 3 6] H) {
INT32 i ; INT128 h=0; INT16 c ;
for (i =0; i <3; i++) {

c=x ;
x>>=16;
hˆ=H[i] [c] ; }

hˆ=x ;
for (i =3; i <7; i++) {

c=h ;
h>>16;
hˆ=H[i] [c] ; }

return (INT64)h ;}

Selection. We consider the setting in which a key is selected based on its value and its hash value.
We do not consider query keys in our selection, as in [BBK`23]. Formally, we have a selector
function f : Σc ˆ R Ñ t0, 1u and let px :“ Prr„UpRq rfpx, rq “ 1s, i.e., the probability that a key
is selected when its hash value is chosen uniformly at random from R. The set of selected keys is
then defined as

X “ tx P Σc | fpx, hpxqq “ 1u ,

with Er|X|s “ µ “ ř
xPΣc px.

Local uniformity is shown for selector functions that select keys based on bitmasks. That is, we
partition the bit representation of the final hash value hpxq into s selection bits and t free bits, and
let hpsqpxq P r2ss denote the s selection bits of hpxq. Then the selector function f has the property
that fpx, hpxqq “ fpx, hpsqpxqq. The remaining t bits of hpxq are denoted by hptqpxq P r2ts and are
not involved in the selection process. Going back a step, we can define a similar partition on the
bits of the final simple tabulation hash function ph. That is, we let phpsqpxq denote the s selection bits
of phpxq and note that: hpsqpxq “ phpsqpx̃q. Similarly for the free bits of ph, we have hptqpxq “ phptqpx̃q.
Linear Independence. A crucial ingredient in [BBK`23] is the notion of linear independence of
a set of keys. Consider some set Y of keys in Σk, each consisting of k characters. Then the set Y is
linearly independent if, for every subset Y 1 Ď Y , the keys in Y 1 have the following property: there
exists a character that occurs an odd number of times in some position i P t1, . . . , ku. Conversely,

13

it cannot be that in each character position, all characters appear an even number of times across
the keys in Y 1. We then define

IpY q “ the event that the set Y is linearly independent .

For such linearly independent sets, Thorup and Zhang [TZ12] showed that a simple tabulation
hash function is fully-random on the set Y if and only if Y is linearly independent. In the context
of tornado tabulation, we focus on sets Y of derived keys and thus, linear independence is an event
that depends only on the randomness of rh. Bercea et. al [BBK`23] then show the following:

Theorem 3. Let h “ ph ˝ rh : Σc Ñ R be a random tornado tabulation hash function with d derived
characters and f as described above. If µ ď Σ{2, then the event Iph̃pXqq fails with probability at
most

7µ3p3{|Σ|qd`1 ` 1{2|Σ|{2 . (10)

They also showed the following:

Theorem 4. Let h “ ph ˝ rh : Σc Ñ R be a random tornado tabulation hash function with d derived
character and f as described above. Then, for any δ ą 0, we have that

Pr
”
|X| ě p1` δq ¨ µ^ IprhpXqq

ı
ď

ˆ
eδ

p1` δq1`δ

˙µ

.

We note that, from the above, one can obtain the classic Chernoff-style concentration (without
IprhpXqq), by summing the error probabilities from Theorem 3 and Theorem 4.

4 Technical Contribution

In this section, we describe the setup and techniques used in the proof of Theorem 1 which we
restate below.

Theorem 1. For any b ě 1 and c ď ln s, if s ě 216 ¨ b2, and µ P rs{4, s{2s. For any δ ą 0,

Prr|X| ă p1´ δqµs ă 3 exp

ˆ´δ2µ
7

˙
` pc` b` 1q lnpsq ¨

˜
49

ˆ
3

s

˙b

` 3

ˆ
1

2

˙s{2¸
. (8)

4.1 The Upper-Tail Bound (Theorem 4)

To appreciate our new lower-tail bound, we first briefly review the simple proof of the upper-tail
bound from [BBK`23]. We will see why the same techniques breaks down for the lower-tail bound.
However, it importantly turns out that we can still use some of the techniques for the upper tail
bound in the proof of the lower tail bound. Namely, to get in a position to bound the lower tail, it
helps to exclude certain upper tail error events. We will return to this point shortly.

The upper tail bound is the classic Chernoff bound as long as we also ask for the selected derived
keys to be linearly independent, that is,

PrrX ě p1` δqµ ^ Iph̃pXqqs ď expp´µδ2{3q.

14

The proof of this statement is basically the observation that in the standard proof of Chernoff
bounds, the probability bound is a sum over different sets Y of the probability that Y Ď X, and
this probability should be bounded by

ś
xPY px where px is the marginal probability that x is

selected. If the keys rY “ h̃pY q derived from Y are linearly independent (this depends only on rh),
then when we pick the top simple tabulation function at random,

Pr
ĥ
rY Ď X | IprhpY qqs “

ź

xPY
px.

However, I ^ pY Ď Xq implies that Ỹ is linearly independent, and therefore

PrrY Ď X ^ IprhpY qqs ď PrrY Ď X | IprhpY qqs “
ź

xPY
px.

We would like to do the same kind of argument for the lower tail bound, but here the Taylor
expansion in the standard proof also sums over the probabilities of events that sets Y are non-
selected in the sense Y XX “ H. However, the hash values of non-selected keys are very dependent.
In particular, we have no upper bound on the probability that PrrpY XX “ Hq^ Is which would,
if independent, have been bounded by

ś
xPY p1´ pxq.

4.2 High-Level Analysis for Lower-Tail Bound

For the analysis, we first partition the selected elements into buckets based on their last derived
character, that is, we let Xα be the set of selected keys that have α as their final derived character,
i.e.,

Xα “ tx P X | rxc`d “ αu .
Note that X “ Ť

αPΣ Xα and we define f “ Er|Xα|s “ µ{|Σ| ď 1{2.
With full randomness the p|Xα|qαPΣ would be independent Poisson distributed random variables.

With Tornado Tabulation, they are neither independent nor Poisson distributed. However, we can
argue that with high probability, in a certain sense they approximate this ideal. Below, we will
introduce two experiments which describe this sense.

Introducing h̄. Key to our analysis is to break up the definition of the hash function in a new way.
Specifically, we divide the process of computing h differently. Let phc`d : Σ Ñ R denote the table
corresponding to the last derived character in our top simple tabulation function ĥ. In our C-code,
this is the last table we look up in before we output the final hash value hpxq. Everything that
comes before this last table lookup, we denote by h̄ : Σc Ñ Rˆ Σ (this includes the computations
needed to obtain the full derived key rx). Note that h outputs two values. The first value, denoted
as h̄r0s, is a value in R and is the exclusive or of the first c ` d ´ 1 table lookups that ph makes.
The second value, denoted as h̄r1s, is equal to the last derived character rxc`d. Under this view, the
final hash value can be computed as

hpxq “ h̄r0spxq ‘ phc`dph̄r1spxqq .
Our tornado hash function h is thus defined by the two independent random variables h̄ and ĥc`d.

15

The High-Level Analysis. Using the principle of deferred decision, we are going to make two
different analyses depending on which of h̄ and ĥc`d is generated first. Each order provides a
different understanding, and at the end, we link the two in a subtle way.

Experiment 1. Suppose we first fix h̄ arbitrarily, while leaving ĥc`d random. We claim that
this does not change the expectation, that is, E

“|X| ˇ̌ h̄‰ “ Er|X|s. Moreover, the |Xα| are
completely independent, for when h̄ is fixed, then so are all the derived keys, and then Xα

only depends on the independent phc`dpαq.
The problem that remains is that the distribution of each |Xα| depends completely on how
we fixed h̄.

Experiment 2. Suppose instead we first fix ĥc`d arbitrarily, while leaving h̄ random. In this case,
expanding a lot on the upper-tail bound techniques from [BBK`23], we will argue that with
high probability, on the average, the values |Xα| will follow a distribution not much worse
than if they were independent random Poisson variables. More precisely, we will argue that,

w.h.p., for any i P N, the fraction of α P Σ for which |Xα| ě i is not much bigger than f i

i! .

Compare this to a Poisson distributed variable Y with ErY s “ f , where PrrY “ is “ f i

i! e
´f .

Naturally, PrrY ě is ě PrrY “ is, and so the loss of our analysis relative to that of Poisson
distributed variables is less than a factor ef .

Linking the Experiments. We now want to link the above experiments. For i P N define

Si “ |tα P Σ : |Xα| ě iu|
to be the number of characters α for which Xα contains at least i selected keys. Note that
|X| “ ř

iPN Si. In particular,

Er|X|s “ Er|X| | h̄s “ Er
ÿ

iPN
Si | h̄s (11)

by the discussion below Experiment 1. As stated under Experiment 2, w.h.p., Si is not much

bigger than f i

i! |Σ|.
We now go back to Experiment 1 where h̄ was fixed first. We would like to claim that, w.h.p.,

Er|Si| | h̄s is also not much larger than f i

i! |Σ|. If we can prove this, we are in a good shape
to employ concentration bounds, for with h̄ fixed, Si is the sum of independent 0-1 variables,
which are sharply concentrated by standard Chernoff bounds. Moreover, |X| “ ř

iPN Si and
E
“|X| ˇ̌ h̄‰ “ µ, so the error X ´ µ is the sum of the layer errors Si ´ ErSi | h̄s where each i

defines a layer. The rough idea then is to carefully apply concentration bounds within each
layer and argue that the total sum of errors across layers is not too big.

Initially, we are only able to bound the probability that Si is not too big, but we need an
upper tail bound for ErSi | h̄s. To get this, we need to link the two experiments. This link
between the Experiment 2 analysis yielding high probability bounds on the size of Si and
high probability bounds on ErSi | h̄s as needed for Experiment 1 is Lemma 5 below.

Lemma 5. For any λ
Pr

“
E
“
Si

ˇ̌
h
‰ ě λ` 1

‰ ď 2PrrSi ě λs . (12)

16

Proof. The proof of (12) is simple but subtle. We know from the discussion on Experiment 1 that
conditioned on h̄ “ h̄0 for any fixed h̄0, the distribution of Si is a sum of independent t0, 1u variables.
We wish to show that if h0 is such that E

“
Si

ˇ̌
h “ h̄0

‰ ě λ ` 1, then Pr
“
Si ě λ

ˇ̌
h “ h̄0

‰ ě 1{2.
Conditioned on h “ h̄0, this is a question about sums of independent t0, 1u variables. We will use
the following restatement of a corollary from [JS68].

Claim 6. [JS68, Corollary 3.1] Let pZjqmj“1 be independent random t0, 1u variables, Z “ řm
j“1 Zj ,

and µ “ ErZs. Then PrrZ ě ErZs ´ 1s ą 1{2.
To prove our lemma, write

PrrSi ě λs ě Pr
“
E
“
Si

ˇ̌
h
‰ ě λ` 1

‰ ¨ Pr“Si ě λ | E“Si

ˇ̌
h
‰ ě λ` 1

‰

We thus have to show that Pr
“
Si ě λ | E“Si

ˇ̌
h
‰ ě λ` 1

‰ ě 1{2. This follows more or less directly

from claim 6, but let us write out the proof. Let H “ th̄0 | E
“
Si

ˇ̌
h “ h̄0

‰ ě λ ` 1u. From the
corollary and the fact that conditioned on any h̄ “ h̄0, Si is the sum of independent t0, 1u variables,
it follows that for any h̄0 P H, PrrSi ě λ | h “ h̄0s ě 1{2. Now we may write

Pr
“
Si ě λ | E“Si

ˇ̌
h
‰ ě λ` 1

‰ “
ř

h̄0PH PrrSi ě λ | h “ h̄0s ¨ Prrh “ h̄0s
Prrh̄ P Hs ě

1
2

ř
h̄0PH Prrh “ h̄0s
Prrh P Hs “ 1

2
,

where we used the general formula PrrA | ŤjPJ Bjs “
ř

jPJ PrrA|BjsPrrBj s
PrrŤjPJ Bj s for disjoint events pBjqjPJ .

This completes the proof.

In fact, we do not have a direct way of bounding PrrSi ě cs and we will have to consider
a more restricted event which we can bound the probability of using the local uniformity result
from [BBK`23]. This will be the content of Corollary 11 below.

Let us now reflect on what we achieved above and how it is useful for our goal. We are interested
in lower tail bounds for ErXs “ ř8

i“1 Si and we already observed in (11) that
ř8

i“1 ErSi | h̄s “ ErXs.
We would like to do a high probability bound over h̄ to ensure that it has certain ’good’ properties.
If these properties hold, we hope to provide lower tail bounds for

ř8
i“1 ErSi | h̄s. Conditioned on

h̄, each Si is a sum of t0, 1u variables, and we know how to prove concentration bounds for such
sums. Below we list the good properties which we will show that h̄ satisfies with high probability.

1.
ř8

i“1 ErSi | h̄s “ ErXs.

2. ErSi | h̄s À f i

i! .

3. ErSi | h̄s “ 0 when i is larger than some imax.

We already saw (Experiment 1) that 1. holds with probability 1. For 2., we will see in Section 4.4
how we can use an upper tail bound for Tornado Tabulation hashing to bound the probability
that Si is large (Experiment 2), and then the result will follow from Lemma 5 which links the two
experiments. Finally, for 3., we need to prove a stronger version of the local uniformity theorem
of [BBK`23] appearing as Theorem 17. The proof is technical but follows a similar path to the one
used in [BBK`23]. However, we do require a novel combinatorial result for bounding dependencies
of simple tabulation hashing. This result is Theorem 38 in Section 8

17

Layers With the properties 1.-3. in hand, the rough idea next is to prove a bound for each layer
i of the form PrrSi ď ErSi | h̄s ´ ∆is ď pi. Note that each pi will include the additive error
probability Prrh̄ not goods. As the layers are not independent, we have to union bound over each
layer to bound the total error. Defining ∆ “ řimax

i“1 ∆i and p “ řimax
i“1 pi, we obtain

Prr|X| ď Er|X|s ´∆s ď
imaxÿ

i“1

PrrSi ď ErSi | h̄s ´∆is ` p

which will be our desired bound. The most technical part of our proof thus employs various
concentration bounds for events of the form rSi ă E

“
Si

ˇ̌
h
‰ ´ ∆is depending on the values of

µ̄i :“ ErSi | h̄s. Namely, we partition these Si’s into two different types of layers and use different
lower tail techniques depending on which kind of layer we are dealing with. The challenge lies in
setting the relative deviation ∆i of each layer so that we get the desired overall deviation for |X|
and we do not incur a large penalty in the probability by conditioning on h. We distinguish between
bottom layers (which have large µi), regular layers and non-regular layers (which have excessively
small µi).

Bounding Bucket Sizes. The fact that, we need that ErSi | h̄s “ 0 for all i ě imax comes from
the fact that we need to union bound over all layers, and the error probability ti for a single layer i
includes the additive Prrh̄ not goods. Without an upper bound on i, we might even have to union
bound over |Σ|c layers which will come as a significant cost for our error bounds. In fact, the upper
limit imax will be such that, with high probabiliy over h, |Xα| ď imax for all α P Σ. Our bound on
imax appears in Lemma 16 with the proof appearing in Section 5.6.

In the next two subsections, we will zoom in on Experiment 1 and Experiment 2.

4.3 Experiment 1

In this experiment, we first fixed h̄ arbitrarily, noting that then the |Xα| are completely independent
since Xα now only depends on phc`dpαq. We also claimed that the fixing of h̄ did not change
the expectation of |X|. More specifically, we claim that conditioning on h does not change the
probability that a specific key x gets selected.

Observation 7. Let Ix be the indicator random variable that is 1 if x gets selected and 0 otherwise.
Then, for every fixed key x and every fixed value of h̄, we have that:

PrrIxs “ Pr
“
Ix

ˇ̌
h
‰
.

This result is well-known from [BBK`23], but we include a proof for completeness.

Proof. We first note that PrrIxs “ ř
rPR Prrhpxq “ rs ¨PrrIx | hpxq “ rs. By definition, once we fix

the key x and its hash value, then selection becomes deterministic. Therefore

PrrIx | hpxq “ rs “ Pr
“
Ix

ˇ̌
hpxq “ r ^ h

‰
.

The only thing left to prove therefore is that Prrhpxq “ rs “ Pr
“
hpxq “ r

ˇ̌
h
‰
. On one hand, we

know that h hashes uniformly in the range of hash values, so Prrhpxq “ rs “ 1{|R|. On the other
hand, we know that

18

Pr
“
hpxq “ r

ˇ̌
h
‰ “ Pr

“
h̄r0spxq ‘ Tc`dph̄r1spxqq “ r

ˇ̌
h
‰

“ Pr
“
Tc`dph̄r1spxqq “ r ‘ h̄r0spxq ˇ̌ h‰

“ 1{|R| ,
where the last inequality holds because the last table lookup Tc`dph̄r1spxqq picks a value uniformly
at random from R.

As seen in the proof above, once we condition on h, the randomness in selection only comes
from the last table lookup. That is, conditioned on h, the random variables tXαuαPΣ become
independent, i.e., elements across different Xα’s will be selected independently. This, however, is
not enough. That is because if we condition on h, we no longer know how many of the selected
keys have a particular last derived character. Thus, even though the random variables tXαuαPΣ
are independent, they have different, unknown distributions. We cannot bound their variance nor
apply Chernoff on their scaled versions and get competitive bounds.

4.4 Experiment 2

In this experiment, we first fix ĥc`d arbitrarily, while leaving h̄ random. As stated, we will analyze
this case expanding on the techniques from [BBK`23].

For a given key x, let rxăc`d denote the derived key except the last derived character rxc`d.
Moreover, we define h̃ăc`d such that h̃ăc`dpxq “ rxăc`d. We will be very focused on the event that
these shortened derived selected keys are linearly independent, and for ease of notation, we define
the event

J “ Iprhăc`dpXqq.
Using Theorem 3, we prove that this event happens with high probability. More precisely,

Theorem 8.
PrrJ s ě 1´ p24p3{|Σ|qd´3 ` 1{2|Σ|{2q.

Proof. We will prove that

PrrJ | ĥc`ds ě 1´ p24p3{|Σ|qd´3 ` 1{2|Σ|{2q.
Since the bound holds for any ĥc`d, it also holds unconditionally. We consider the function f̄ : Σcˆ
pR ˆ Σq defined by f̄px, pr, αqq “ fpx, r ‘ ĥc`dpαqq. Since hpxq “ h̄r0spxq ‘ ĥc`dph̄r1spxqq then
fpx, hpxqq “ f̄px, h̄pxqq and X “ tx P U | fpx, hpxqq “ 1u “ tx P U | f̄px, h̄pxqq “ 1u. When ĥc`d

is fixed, f̄ is a deterministic function and since h̄ is a tornado hash function with d ´ 1 derived
characters, the result of Theorem 3 gives the claim.

We can now think of keys being picked independently for α. In the same way, as we proved Chernoff
upper bounds for events like rX ě p1` δqµ ^ IprhpXqqs, we can prove

Lemma 9. For any i P N, we have that

Prr|Xα| ě i^ J s ď f i

i!
.

19

The proof of Lemma 9 can be found in Section 5.2. Recall that Si “ |tα P Σ : |Xα| ě iu|. By
Lemma 9 and linearity of expectation, we have that

ErSi ¨ rJ ss ď |Σ| ¨ f
i

i!
“ µ̄i .

Moreover, we can show (also in Section 5.2) a bound on the upper tail of |Si| in terms of µ̄i as such:

Lemma 10. For any δ ą 0:

PrrSi ě p1` δq ¨ µ̄i ^ J s ď
ˆ

eδ

p1` δqp1`δq

˙µ̄i

.

With these lemmas in place, we will briefly revisit the issue of bounding the conditional expec-
tation E

“
Si

ˇ̌
h
‰
by bounding Si, as discussed previously. The following corollary follows directly

from Lemma 5, bringing in event J to give an expression that we can bound with Lemma 10. We
note that the event Prr J s can be bounded using Theorem 8.

Corollary 11. For any λ

Pr
“
E
“
Si

ˇ̌
h
‰ ě λ` 1

‰ ď 2PrrpSi ě λq ^ J s ` 2Prr J s .

4.5 Roadmap of Technical Part of the Paper

In Section 5, we will provide lower tail bounds for the deviation incurred in each layer. In Section 5.1,
we describe the main ideas in the analysis and introduce the different types of layers. We provide
some preliminary tools for the analysis in Section 5.2. Next, in Sections 5.3 to 5.5 we analyse
respectively bottom layers, regular layers, and non-regular layers. Finally Section 5.6 bounds imax.

In Section 6, we prove our improved local uniformity theorem (needed for bounding imax). We
provide necessary definitions (from [BBK`23]) in Section 6.1. In Sections 6.2 to 6.4, we show how
to modify the obstructions from [BBK`23] and how to union bound over them.

Section 7 is dedicated to prove our main results. For this, we need a technical theorem which
we prove in Section 7.1. In Section 7.2, we prove Theorem 1 and in Section 7.3, we prove the
subsampling Theorem 2.

Finally, Section 8 contains our new combinatorial result on bounding dependencies for simple
tabulation hashing.

In Appendix A, we include a Chernoff bound working under a slightly weaker assumption than
independence. We will need this Chernoff bound in the layer analysis.

5 Layers

In this section we present and prove technical theorems for the layers, and the associated parameters,
as used for proving the main theorems. Our main technical proof is a union bound over events of
the form “Si ă E

“
Si

ˇ̌
h
‰ ´ ∆i” that will roughly hold with probability at most pi. We will treat

these events differently, depending on the values of µ̄i “ |Σ| ¨ f i{i!, which is an an upper bound on
ErSis (see Lemma 18).

Namely, for i large enough, when µ̄i ă p, we can design events such that both the sum of
deviations

ř
∆i and associated error probabilities

ř
pi form geometric series, and are thus finite

20

(see Lemma 26). However, as will be apparent in the statements of the theorems given below, we
still incur a small constant error probability for each layer handled, originating from our applications
of Corollary 11. This accumulated error probability will be too high in general, so we further argue
that we incur it only for a (relatively) small number of layers. Namely, in Lemma 16 (Section 5.6),
we show that, with high probability, E

“
Si

ˇ̌
h
‰ “ 0 for all i larger than a threshold imax. Thus, the

deviation for these layers will be zero.
The main technical challenge thus lies in handling the layers where µ̄i ě p. As µ̄1 “ µ there

will be Ω plnpµq ` lnp1{pqq such layers before Lemma 26 applies. With one event defined for each
layer, we are thus dealing with a superconstant number of events, and we will need to perform some
scaling of the error probabilities if we want them to sum to Oppq. Again, the method for doing this
depends on the expected size of the layer.

We define quite a few symbols in the treatment of the different layer types. A reference is
given in table 1 on page 44. For building intuition, we ignore symbols ssec and sall in the following
paragraphs. These can both be considered to equal 1 without altering the structure of the proof,
which will suffice to build a theorem with error probability Oppq. The role of these parameters is
covered in the final paragraph below and serves to control the constant hidden in the O-notation.

Roadmap. In Section 5.1, we review and explain the main lemmas we use to bound the deviation
in each layer. In particular, we partition the layers into bottom, regular and non-regular. After
some preliminaries in Section 5.2, we then prove each of the lemmas in the following sections.
Namely, the proofs for the bottom layers are given in Section 5.3. The proof for the regular layers
is given in Section 5.4. Finally, the proof for non-regular layers is given in Section 5.5.

5.1 Main ingredients

We here discuss the main ideas needed for carrying out the layer analysis.

Regular Layers. A layer is said to be regular if µ̄i ě lnp1{piq, in which case E
“
Si

ˇ̌
h
‰
won’t be

significantly larger than µ̄i, by Lemma 19.
As Er|Xα|s “ µ{|Σ| ď 1{2 most elements of X are expected to be found in the very first layers.

In particular, we handle the combined deviation of layers 1, 2, and 3 through an application of
Bernstein’s inequality, which gives better bounds than those obtained through individual treatment
of the layers.

Theorem 12 (3 layers with Bernstein). Assume that lnpssec{pq ď µ̄3. Then

Pr

«
Sď3 ď E

“
Sď3

ˇ̌
h
‰´

c
7

3
lnp1{pqµ ¨ p1` ε3q ´ lnp1{pq

ff
ă p1` 4{ssecq ¨ p` 4Prr J s .

If layer 3 isn’t regular, we have the following alternate theorem.

Theorem 13 (2 layers with Bernstein). Assume that lnpssec{pq ď µ̄2. Then

Pr

„
Sď2 ď E

“
Sď2

ˇ̌
h
‰´a

2 lnp1{pqµ ¨ p1` ε2q ´ 2

3
lnp1{pq

ă p1` 2{ssecq ¨ p` 2Prr J s ,

where ε2 “
a

6 lnpssec{pq{|Σ| ` p29 lnp1{pq ` 2q{µ.

21

Note that ε2 ď ε3 (see table 1), and we thus use the latter in the statement of Theorem 35.
Both theorems are proven in Section 5.3.

If the following layer(s) are also regular we treat these individually with Lemma 23, which
first gives an upper bound on E

“
Si

ˇ̌
h
‰
and then bounds the deviation between the conditional

expectation and Si through a second Chernoff bound as described in the previous section.
Let inr be the first layer which is not regular. That is, inr “ min ti : µ̄i ă lnp1{piu. Then

Lemma 23 is applied to inr ´ 4 layers in total. As µ̄i “ µf i´1{i! ď µ{2 ¨ p1{6qi´2, we have inr ´ 4 ď
log6

´
µ{2

lnp1{pq
¯

when all pi ď p. Setting pi “ preg “ p

log6

´
µ{2

lnp1{pq
¯ for each layer i P t4, . . . , inr ´ 1u

would thus ensure that the total error probability on these layers is Oppq.
However, as allocating a smaller error probability incurs a larger deviation relative to the ex-

pected size of the layer, it seems unwise to set the same low error probability for all regular layers.
They will have a progressively smaller impact on the final result, after all.

Instead, we let p4 “ p and set pi`1 “ max tpi{e, pregu such that
řinr´1

i“4 pi ď p1.59 ` 1q ¨ p.
Applying Lemma 23 with these values for pi gives the following bound, the proof of which is found
in Section 5.4.

Theorem 14.

Pr

«
inr´1ÿ

i“4

Si ă
inr´1ÿ

i“4

E
“
Si

ˇ̌
h
‰´∆reg

ff
ă p1.59 ` 1{sallq ¨ p1` 2{ssecq ¨ p` pinr ´ 4q ¨ 2Prr J s .

Non-regular layers. The non-regular layers are handled by three different lemmas: Lemma 25
for the single layer inr where µ̄i « lnp1{pregq, Lemma 26 for layer i8 and up where µ̄i ă p, and
Lemma 27 for the layers between the two.

To keep the total error probability of these “top” layers at Oppq we set pi ď p{ntop for each
layer treated by Lemma 27, where ntop is (an upper bound on) the number of such layers. As the
top layers are those where p ă µ̄i ď lnp1{pregq and we assume that inr ě 3 (and thus µ̄i`1 ď µ̄i{6)
there will at most be log6plnp1{pregq ¨ 1{pq “ ntop of these layers.

As an extra complication, note that inr is defined in terms of the threshold preg used for the
regular layers, and thus the tools used for the non-regular layers only hold for pi ă preg. This leads
to the somewhat cumbersome definition of ptop “ max tpreg, p{ntopu.

At this stage, our bounds on E
“
Si

ˇ̌
h
‰
will be smaller than lnp1{piq and thus a Chernoff bound

will no longer give a meaningful bound on the probability that Si is smaller than E
“
Si

ˇ̌
h
‰
. Instead

we use the trivial observation that E
“
Si

ˇ̌
h
‰´ Si ď E

“
Si

ˇ̌
h
‰
as Si is non-negative.

The combined deviation and error probability of these non-regular layers is summarized in
Theorem 15 below, the proof of which can be found in Section 5.5.

Theorem 15. If inr ě 3, then

Pr

«
imaxÿ

i“inr

Si ă
imaxÿ

i“inr

E
“
Si

ˇ̌
h
‰´∆nonreg

ff
ă p ¨ 6{sall ` pimax ´ inrq ¨ 2Prr J s .

Bounding the number of layers. As discussed above, we bound the number of layers under
consideration to limit the accumulation of error terms from applications of Corollary 11. Specifically,
we let Jmax be the event that

řimax
i“1 E

“
Si

ˇ̌
h
‰ “ µ, such that summing the deviation found in these

22

layers represents the full deviation between µ and |X|. The following Lemma bounds the probability
of Jmax.

Lemma 16. Let s ď |Σ| {2 be the number of selection bits and imax “ lnp|Σ|d´22sq. Then

Pr

« 8ÿ

i“imax`1

E
“
Si

ˇ̌
h
‰ ą 0

ff
ď

ˆ
1

|Σ|
˙d´3

` 3c`1

ˆ
3

|Σ|
˙d´1

`
ˆ

1

|Σ|
˙|Σ|{2´1

.

In order to obtain this result, we require an improvement ofTheorem 3. Namely, we need a
better bound on the probability that the derived keys are linearly dependent. This requires a
modification of the analysis in [BBK`23]. The result is as follows.

Theorem 17. Let h “ ph ˝ rh : Σc Ñ R be a random (simple) tornado tabulation hash function
with d derived characters and f as described above. If µ ď Σ{2, then the event Iph̃pXqq fails with
probability at most

3c |Σ| {n ¨ 3µ3p3{|Σ|qd`1 ` f |Σ|{2 (13)

We note that the first term is a factor 3c |Σ| {n smaller than the bound in Theorem 3. Indeed,
we prove it by showing a different analysis than the one for Theorem 3 from [BBK`23]. Details
can be found in Section 6.

Parameters ssec and sall. As seen in the theorems above, parameters ssec and sall serve to scale
the error probabilities. For our proof, we set ssec “ 20 and sall “ 180 (as given in table 1), but all
of the theorems hold regardless of the values chosen – as long as the same values are used across
all layer types.

Specifically, sall scales the error probability of most events, (including the threshold preg used
for the regular layers as well the events defined on non-regular layers) while ssec alters the ratio of
the error probabilities between the two events considered on each regular layer: As a slightly looser
bound on E

“
Si

ˇ̌
h
‰
has little impact on the deviation obtained from the regular layers, we opt for a

more conservative bound on these, in exchange for a smaller error probability. If we allocate error
pi for the “primary” event, in which we bound the absolute difference pE“Si

ˇ̌
h
‰ ´ Siq for a fixed

value of the conditional expectation, we instead spend error pi{ssec on the “secondary” event where
we bound E

“
Si

ˇ̌
h
‰
.

With this terminology, the regular layers consist of both primary and secondary events, while
the non-regular layers exclusively consist of secondary events. This aligns with an intuitive under-
standing that the regular layers lead to deviation proportional to

a
lnp1{pqµ while the non-regular

layers contribute deviation in terms of lnp1{pq. Note, however, that the error probability of the
secondary event, at preg{ssec is what determines the boundary inr between regular and non-regular
layers, which is why ssec ends up appearing in the deviation found in the non-regular layers.

For Theorem 35 we’ve set ssec and sall quite high in order to bring the total error probability
down to 3p. At the other extreme, setting ssec “ sall “ 1 would make for an equally viable
theorem with fewer additive terms in the deviation. It’s total error probability would be roughly
19p, however.

5.2 Preliminaries

We need the following general tools for bounding Si which, together with Corollary 11, allows us
to bound E

“
Si

ˇ̌
h
‰
.

23

Lemma 18 (Expected size of a layer).

ErSi ¨ rJ ss ď µ̄i “ |Σ| ¨ f
i

i!

Proof. Let px “ Prrx P Xs be the probability that each key x is selected. Note that Prrx P Xαs “
px{|Σ| as the last derived character of hpxq is uniformly distributed over Σ. When restricted to
event J we further have PrrY Ď Xα ^ J s ďś

xPY Prrx P Xαs.

Prr|Xα| ě i^ J s ď
ÿ

tx1,...,xiuPpniq

iź

k“1

pxk

|Σ|

ď 1

i! ¨ |Σ|i
ÿ

xx1,...,xiyPrnsi

iź

k“1

pxk

“ 1

i! ¨ |Σ|i
iź

k“1

ÿ

xPrns
px

“ µi

i! ¨ |Σ|i “
f i

i!
.

Then

ErSi ¨ rJ ss “
ÿ

αPΣ
Prr|Xα| ě i^ J s ď |Σ| ¨ f

i

i!
.

Lemma 19 (Upper tail for layer size).

PrrSi ą p1` δqµ̄i ^ J s ď
ˆ

eδ

p1` δqp1`δq

˙µ̄i

where µ̄i “ |Σ|f i{i! and δ ą 0.

Proof. First observe that bounding pSi^J q is equivalent to bounding the sum of indicator variablesř
αPΣ r|Xα| ě i^ J s. We will show that these indicator variables satisfy the conditions of a slightly

generalized Chernoff bound (Lemma 41 in Appendix A) with pα “ f i{i! for all α P Σ such thatř
αPΣ pα “ µ̄i. Hence we need to show that, for any set of characters tα1, . . . , αku Ď Σ, we have

Pr
”Źk

l“1 |Xαi | ě i^ J
ı
ď pf i{i!qk.

24

For each x P Σc let qx “ Prrx P Xs such that
ř

qx “ µ. Then

Pr

«
kľ

ℓ“1

|Xαi | ě i^ J
ff
“ Pr

«
kľ

ℓ“1

DAℓ P
ˆ
n

i

˙
: Aℓ Ď Xαℓ

^ J
ff

ď
ÿ

xA1,...,AkyPpniqk
disjoint

Pr

«
kľ

ℓ“1

Aℓ Ď Xαℓ
^ J

ff

ď
ÿ

xA1,...,AkyPpniqk
disjoint

ź

xPŤk
ℓ“1 Ak

qx
|Σ| ď

1

pi! ¨ |Σ|iqk
ÿ

APrnsi¨k

ź

xPA
qx

“ 1

pi! ¨ |Σ|iqk
i¨kź

ℓ“1

ÿ

xPrns
qx “ 1

pi! ¨ |Σ|iqk
i¨kź

ℓ“1

µ “
ˆ
f i

i!

˙k

.

5.3 Bottom layers: Proof of Theorems 12 and 13

The proofs of Theorems 12 and 13 are both based on an application of Bernstein’s inequality. For
non-centered independent variables X1,X2, . . ., Bernstein’s inequality states that

Pr
”ÿ

Xi ď E
”ÿ

Xi

ı
´ t

ı
ď exp

ˆ ´0.5t2ř
VarrXis ` t ¨M{3

˙
(14)

where M is a value such that |Xi| ďM .
For Theorem 13 we sum over X̂α “ min t3, |Xα|u such that Sď3 “ S1`S2`S3 “ ř

αPΣ X̂α. As

the X̂α are independent when conditioned on h we can apply Bernstein’s when we’ve established a
bound on

ř
Var

“
X̄α | h

‰
.

Lemma 20. If lnpssec{pq ď |Σ|f3{6 “ µ̄3,

Pr

«ÿ

αPΣ
Var

”
X̂α | h

ı
ą p7{6` εqµ

ff
ă p ¨ 4{ssec ` 4Prr J s

where ε “ p2`?6qalnpssec{pq{|Σ| ` 6{µ.

Proof. Define µ̂ “ ř
α E

”
X̂α

ˇ̌
ˇ h

ı
“ E

“
Sď3

ˇ̌
h
‰
and f̂ “ µ̂{|Σ|. It then holds that

ÿ

αPΣ

´
E
”
X̂α

ˇ̌
ˇ h

ı¯2 ě
ÿ

αPΣ
pµ̂{|Σ|q2 “ |Σ|f̂2

25

and thus

ÿ

αPΣ
Var

”
X̂α | h

ı
“

ÿ

αPΣ
E
”
X̂2

α

ˇ̌
ˇ h

ı
´

ÿ

αPΣ

´
E
”
X̂α

ˇ̌
ˇ h

ı¯2

ď
ÿ

αPΣ
E
”
X̂2

α

ˇ̌
ˇ h

ı
´ |Σ|f̂2

“
ÿ

αPΣ
E
”
X̂αpX̂α ´ 1q

ˇ̌
ˇ h

ı
`

ÿ

αPΣ
E
”
X̂α

ˇ̌
ˇ h

ı
´ |Σ|f̂2

“ 2 ¨ E
”ˇ̌
ˇ
!
α : X̂α “ 2

)ˇ̌
ˇ
ˇ̌
ˇ h

ı
` 6 ¨ E

”ˇ̌
ˇ
!
α : X̂α “ 3

)ˇ̌
ˇ
ˇ̌
ˇ h

ı
` µ̂´ |Σ|f̂2

“ 2 ¨ E“S2

ˇ̌
h
‰` 4 ¨ E“S3

ˇ̌
h
‰` µ̂´ |Σ|f̂2 .

We will now bound E
“
S2

ˇ̌
h
‰
and E

“
S3

ˇ̌
h
‰
. Applying Lemma 19 with δ2 “

a
3 lnpssec{pq{µ̄2 we

have
PrrS2 ě p1` δ2qµ̄2 ^ J s ď p{ssec .

Invoking Corollary 11, we have for µ`
2 “ p1` δ2qµ̄2 ` 1

Pr
“
E
“
S2

ˇ̌
h
‰ ě µ`

2

‰ ď 2p{ssec ` 2Prr J s .

Likewise for δ3 “
a
3 lnpssec{pq{µ̂3 and µ`

3 “ p1` δ3qµ̄3 ` 1,

Pr
“
E
“
S3

ˇ̌
h
‰ ě µ`

3

‰ ď 2p{ssec ` 2Prr J s .
Hence, with probability at least 1´ p ¨ 4{ssec ´ 4Prr J s we have,

ÿ

αPΣ
Var

”
X̂α | h

ı
ă 2µ`

2 ` 4µ`
3 ` µ̂´ |Σ|f̂2

“ 2p1 ` δ2qµ̄2 ` 4p1 ` δ3qµ̄3 ` µ̂´ |Σ|f̂2 ` 6

“ 2δ2µ̄2 ` 4δ3µ̄3 ` 2|Σ|f2{2` 4|Σ|f3{6` µ̂´ |Σ|f̂2 ` 6

“ δ2|Σ|f2 ` 2

3
δ3|Σ|f3 ` |Σ|f2 ` 2

3
|Σ|f3 ` µ̂´ |Σ|f̂2 ` 6

“
ˆ
1` δ2 ` 2f

3
¨ p1` δ3q

˙
|Σ|f2 ` µ̂´ |Σ|f̂2 ` 6 .

Note that the function x ÞÑ x ´ x2 is increasing in x P r0, 1{2s. As f̄ ď f ď 1{2 we thus have
f̄ ´ f̄2 ď f ´ f2 and

|Σ|f2 ` µ̂´ |Σ|f̂2 “ |Σ|pf2 ` f̂ ´ f̂2q ď |Σ| ¨ f “ µ

giving

ÿ

αPΣ
Var

”
X̂α | h

ı
ď

ˆ
δ2 ` 2f

3
¨ p1` δ3q

˙
|Σ|f2 ` µ` 6

ď `
7{6` δ2f ` δ3 ¨ 2f2{3˘µ` 6 .

26

Finally,

δ2f ` δ3 ¨ 2f2{3 “ f
a
6 lnpssec{pq{pf2|Σ|q ` f2

a
18 lnpssec{pq{pf3|Σ|q ¨ 2{3

“a
6 lnpssec{pq{|Σ| `

a
18f lnpssec{pq{|Σ| ¨ 2{3

“a
6 lnpssec{pq{|Σ| `

a
8f lnpssec{pq{|Σ|

ď p2`?6q ¨alnpssec{pq{|Σ|

and thus
ř

αVar
”
X̂α | h

ı
will be roughly µ ¨ 7{6 whenever µ is large and lnpssec{pq ! µ.

With the bound on
ř

Var
”
X̂α | h

ı
in place, we can prove Theorem 12.

Theorem 12 (3 layers with Bernstein). Assume that lnpssec{pq ď µ̄3. Then

Pr

«
Sď3 ď E

“
Sď3

ˇ̌
h
‰´

c
7

3
lnp1{pqµ ¨ p1` ε3q ´ lnp1{pq

ff
ă p1` 4{ssecq ¨ p` 4Prr J s .

Proof. Let ε “ p2 ` ?6qalnpssec{pq{|Σ| ` 6{µ as defined in Lemma 20. As
ˇ̌
ˇX̂α

ˇ̌
ˇ ď 3, Bernstein’s

(eq. (14)) takes the following form when conditioning on
ř

αPΣ Var
”
X̂α | h

ı
ď µ1 “ p7{6` εqµ,

Pr

«
Sď3 ď E

“
Sď3

ˇ̌
h
‰´ t

ˇ̌
ˇ̌
ˇ h,

ÿ

αPΣ
Var

”
X̂α | h

ı
ď µ1

ff
ď exp

ˆ´0.5t2
µ1 ` t

˙
.

Solving for t we find

t ě
d
2 lnp1{pq

ˆ
µ1 ` 1

2
lnp1{pq

˙
` lnp1{pq

ùñ exp

ˆ´0.5t2
µ1 ` t

˙
ď p .

As
b

7
3 lnp1{pqp1 ` ε3qµ ` lnp1{pq ě

b
2 lnp1{pq `µ1 ` 1

2 lnp1{pq
˘ ` lnp1{pq, the theorem follows

when we add the probability that
ř

α Var
”
X̂α | h

ı
ą µ1.

We prove Theorem 13 in the same way, with X̄α “ min t2, |Xα|u, Sď2 “ S1 ` S2 “ ř
α X̄α and

the following bound on
ř

Var
“
X̄α | h

‰
.

Lemma 21. If lnpssec{pq ď |Σ|f2{2 “ µ̄2,

Pr

«ÿ

αPΣ
Var

“
X̄α | h

‰ ą p1` εqµ
ff
ă p ¨ 2{ssec ` 2Prr J s

where ε “a
6 lnpssec{pq{|Σ| ` 2{µ.

27

Proof. The proof proceeds in the same way as that of Lemma 20. Define µ̄ “ ř
α E

“
X̄α

ˇ̌
h
‰ “

E
“
Sď2

ˇ̌
h
‰
and f̄ “ µ̄{|Σ|. Then

ÿ

αPΣ
Var

“
X̄α | h

‰ ď
ÿ

αPΣ
E
“
X̄αpX̄α ´ 1q ˇ̌ h‰`

ÿ

αPΣ
E
“
X̄α

ˇ̌
h
‰´ |Σ|f̄2

“ 2 ¨ E“S2

ˇ̌
h
‰` µ̄´ |Σ|f̄2 .

By Corollary 11 and Lemma 19, for δ “ a
3 lnpssec{pq{µ̄2 “

a
6 lnpssec{pq{pf2|Σ|q and µ` “

p1` δq|Σ|f2{2` 1,
Pr

“
E
“
S2

ˇ̌
h
‰ ą µ` ^ J

‰ ď p ¨ 2{ssec ` 2Prr J s .
Hence, with probability at least 1´ p ¨ 2{ssec ´ 2Prr J s we have

ÿ

αPΣ
Var

“
X̄α | h

‰ ă 2µ` ` µ̄´ |Σ|f̄2

“ p1` δq|Σ|f2 ` µ̄´ |Σ|f̄2 ` 2

ď p1` δfqµ ` 2 .

Finally,

δf “ f
a
6 lnpssec{pq{pf2|Σ|q

“a
6 lnpssec{pq{|Σ|

and the lemma follows.

Theorem 13 (2 layers with Bernstein). Assume that lnpssec{pq ď µ̄2. Then

Pr

„
Sď2 ď E

“
Sď2

ˇ̌
h
‰´a

2 lnp1{pqµ ¨ p1` ε2q ´ 2

3
lnp1{pq

ă p1` 2{ssecq ¨ p` 2Prr J s ,

where ε2 “
a

6 lnpssec{pq{|Σ| ` p29 lnp1{pq ` 2q{µ.
Proof. Let ε “a

6 lnpssec{pq{|Σ|`2{µ as defined in Lemma 21. As
ˇ̌
X̄α

ˇ̌ ď 2, Bernstein’s (eq. (14))

takes the following form when conditioning on
ř

αPΣ Var
“
X̄α | h

‰ ď µ1 “ p1` εqµ,

Pr

«
Sď2 ď E

“
Sď2

ˇ̌
h
‰´ t

ˇ̌
ˇ̌
ˇ h,

ÿ

αPΣ
Var

“
X̄α | h

‰ ď µ1
ff
ď exp

ˆ ´0.5t2
µ1 ` t ¨ 2{3

˙
.

Solving for t we find

t ě
d

2 lnp1{pq
ˆ
µ1 ` 2

9
lnp1{pq

˙
` 2

3
lnp1{pq

ùñ exp

ˆ ´0.5t2
µ1 ` t ¨ 2{3

˙
ď p .

The theorem follows when we add the probability that
ř

α Var
“
X̄α | h

‰ ą µ1.

28

5.4 Regular Layers: Proof of Theorem 14

In order to prove Theorem 14 we first need the following lemmas bounding the difference between
Si and its conditional expectation.

Lemma 22. Let δ “a
3 lnp1{pq{µ̄i. If lnp1{pq ď µ̄i then

Pr
“
E
“
Si

ˇ̌
h
‰ ě p1` δqµ̄i ` 1

‰ ď 2p` 2Prr J s .

Proof. By the assumption of the theorem δ ď ?
3 and thus

`
eδ{p1` δqp1`δq˘ ď expp´δ2{3q. It

follows from Lemma 19 that,
PrrSi ě p1` δqµ̄i ^ J s ď p .

By Corollary 11
Pr

“
E
“
Si

ˇ̌
h
‰ ě p1` δqµ̄i ` 1

‰ ď 2p` 2Prr J s .

Lemma 23. Assume that lnpssec{piq ď µ̄i. Then

Pr
”
Si ď E

“
Si

ˇ̌
h
‰´a

2 lnp1{piqpµ̄i ¨ p1` εiq ` 1q
ı
ă p1` 2{ssecq ¨ pi ` 2Prr J s

where εi “
a

3 lnpssec{piq{µ̄i.

Proof. As lnpssec{piq ď µ̄i we can apply Lemma 22 with p “ pi{ssec and get that

Pr
“
E
“
Si

ˇ̌
h
‰ ě p1` εiqµ̄i ` 1

‰ ă 2{ssec ¨ pi ` 2Prr J s .

Let µ` “ p1`εiqµ̄i`1 and δ1 “a
2 lnp1{piq{µ`. When conditioned on h, Si is a sum of independent

0/1-variables (with unknown, non-identical distributions). Conditioning on E
“
Si

ˇ̌
h
‰ ă µ`, we thus

have

Pr
“
Si ă E

“
Si

ˇ̌
h
‰´ δ1µ` ˇ̌

h, E
“
Si

ˇ̌
h
‰ ă µ`‰ ă exp

`´µ`δ12{2˘ “ pi .

As this bound holds for all realizations of h where E
“
Si

ˇ̌
h
‰ ă µ` the bound also holds without

conditioning on h:

Pr
“
Si ă E

“
Si

ˇ̌
h
‰´ δ1µ` ˇ̌

E
“
Si

ˇ̌
h
‰ ă µ`‰ ă exp

`´µ`δ12{2˘ “ pi .

Combining the pieces,

Pr
“
Si ď E

“
Si

ˇ̌
h
‰´ δ1µ`‰ ď Pr

“`
Si ď E

“
Si

ˇ̌
h
‰´ δ1µ`˘^ `

E
“
Si

ˇ̌
h
‰ ă µ`˘‰` Pr

“
E
“
Si

ˇ̌
h
‰ ě µ`‰

ď Pr
“
Si ď E

“
Si

ˇ̌
h
‰´ δ1µ` ˇ̌

E
“
Si

ˇ̌
h
‰ ă µ`‰` 2{ssec ¨ pi ` 2Prr J s

ď p1` 2{ssecq ¨ pi ` 2Prr J s .

The lemma follows as δ1µ` “a
2 lnp1{piq ¨ pp1` εiqµ̄i ` 1q.

We are now ready to prove Theorem 14.

29

Theorem 14.

Pr

«
inr´1ÿ

i“4

Si ă
inr´1ÿ

i“4

E
“
Si

ˇ̌
h
‰´∆reg

ff
ă p1.59 ` 1{sallq ¨ p1` 2{ssecq ¨ p` pinr ´ 4q ¨ 2Prr J s .

Proof. We define p4 “ p and pi`1 “ max tpi{e, pregu as discussed in Section 5.1. Let εi “a
3 lnpssec{piq{µ̄i and ∆i “

a
2 lnp1{piq ¨ pp1` εiqµ̄i ` 1q. By Lemma 23, for all i P t4, . . . , inr ´ 1u,

Pr
“
Si ă E

“
Si

ˇ̌
h
‰´∆i

‰ ă p1` 2{ssecq ¨ pi ` 2Prr J s .

The theorem follows when we have shown that
řinr´1

i“4 ∆i ď ∆reg and
řinr´1

i“4 pi ď p1.59`1{sallq ¨p.
We start with the latter, and recall that preg ď p

sall¨pinr´4q as discussed in Section 5.1. Hence

inr´1ÿ

i“4

pi ď pinr ´ 4q ¨ preg `
8ÿ

k“0

p

ek
ď

ˆ
1

sall
` 1.59

˙
¨ p .

To bound the sum of ∆i’s we distinguish between three cases:
First, assume inr “ 5. We thus have to show that ∆4 ď ∆reg. As εi ď

?
3,

∆4 ď
b

2 lnp1{pq ¨ pp1`?3qµ̄4 ` 1q ď 0.169
a

lnp1{pqµ`
a

2 lnp1{pq
2
?
µ̄4

ď 0.169
a

lnp1{pqµ `
?
2

2
.

Second, assume inr “ 6. Then lnp1{p5q ď µ̄5 “ µ̄4 ¨ f{5. As lnp1{p4q ď lnp1{p5q we then have
ε4 “

a
3 lnp1{p4q{µ̄4 ď

a
3{10.

∆4 `∆5 ď
b

2 lnp1{p4q ¨ pp1 `
a

3{10qµ̄4 ` 1q `
b

2 lnp1{p5q ¨ pp1 `
?
3qµ̄5 ` 1q

ď 0.127
a

lnp1{p4qµ`
a

2 lnp1{p4q
2
?
µ̄4

` 0.054
a

lnp1{p5qµ`
a

2 lnp1{p5q
2
?
µ̄5

ď 0.181
a

lnp1{pqµ ` 0.054
?
µa

lnp1{pq `
?
2 .

Finally, assume inr ě 7. Then lnp1{p6q ď µ̄6 “ µ5 ¨ f{6 “ µ4 ¨ f2{30 and thus ε4 ď
a

3{120
while ε5 ď

a
3{12. First we bound ∆4 `∆5, in the same way as in the previous case:

∆4 `∆5 ď
b

2 lnp1{p4q ¨ pp1 `
a

3{120qµ̄4 ` 1q `
b
2 lnp1{p5q ¨ pp1`

a
3{12qµ̄5 ` 1q

ď 0.110
a

lnp1{p4qµ`
a

2 lnp1{p4q
2
?
µ̄4

` 0.041
a

lnp1{p5qµ`
a

2 lnp1{p5q
2
?
µ̄5

ď 0.151
a

lnp1{pqµ ` 0.041
?
µa

lnp1{pq `
?
2

2

5ÿ

i“4

d
lnp1{piq

µ̄i
.

30

For i “ 6, . . . , inr ´ 1 we stick with the simple bound εi ď
?
3.

inr´1ÿ

i“6

∆i ď
inr´1ÿ

i“6

b
2 lnp1{piq ¨ pp1`

?
3qµ̄i ` 1q

ď
inr´1ÿ

i“6

b
2 lnp1{pq ¨ p1`?3qµ̄i `

pi´ 4q
b

2p1`?3qµ̄i

2
a

lnp1{pq `
a
2 lnp1{piq
2
?
µ̄i

ď 0.0209
a

lnp1{pqµ ` 0.0245

c
µ

lnp1{pq `
?
2

2

inr´1ÿ

i“6

d
lnp1{piq

µ̄i

hence

inr´1ÿ

i“4

∆i ď 0.172
a

lnp1{pqµ` 0.066

c
µ

lnp1{pq `
?
2

2

inr´1ÿ

i“4

d
lnp1{piq

µ̄i
.

Using that µ̄inr´1 ě lnp1{pinr´1q we thus have µ̄inr´1´k ě µ̄inr´1 ¨ 10k ě lnp1{pinr´1q ¨ 10k when
k ď inr ´ 5, and we can bound the final sum:

?
2

2

inr´1ÿ

i“4

d
lnp1{piq

µ̄i
ď
?
2

2

inr´5ÿ

k“0

1?
10k

ď ?2 .

Thus we have shown that
ř

i ∆i ď ∆reg in all three cases, which together cover all outcomes.

5.5 Non-Regular Layers: Proof of Theorem 15

Theorem 15 covers the layers from inr and up. Define i8 to be the first integer i such that
µ̄i ď p{sall. Then Lemmas 25 to 27 below cover all of the non-regular layers, and Theorem 15 is
obtained through a union bound over the three lemmas.

Before proving the lemmas, we need the following definition and bound:

Definition 1 (W). The Lambert W function is the function that solves the equation

W pxq ¨ exppW pxqq “ x .

Lemma 24 (Theorem 2.3 of [HH08]). For x ą 1{e,

W pxq ď ln

ˆ
2x

lnpxq ` 1

˙
.

Lemma 25.
Pr

“
E
“
Sinr

ˇ̌
h
‰ ą ∆inr

‰ ď p ¨ 2{sall ` 2Prr J s .
Proof. Let pi “ preg{ssec ď p{sall such that lnp1{piq ě µ̄inr and define δ “ 1.33e lnp1{pq{µ̄i ´ 1 ą
1.33e ´ 1 such that p1` δqµ̄i “ 1.33e lnp1{piq. As 1.33 ą eW p1{eq,

1.33e lnp1{piq ą lnp1{piq{ lnp1.33q “ log1.33p1{piq .

31

Then, by Lemma 19,

PrrSinr ě 1.33e lnp1{piq ^ J s ď
ˆ

eδ

p1` δqp1`δq

˙µ̄i

ď
ˆ

e

1` δ

˙p1`δqµ̄i

ď
´ e

1.33e

¯1.33e lnp1{piq

ă
ˆ

1

1.33

˙log1.33p1{piq
“ pi .

By Corollary 11, Pr
“
E
“
Sinr

ˇ̌
h
‰ ą ∆inr

‰ ď 2pi ` 2Prr J s ď p ¨ 2{sall ` 2Prr J s.
Lemma 26.

Pr

«
imaxÿ

i“i8
E
“
Si

ˇ̌
h
‰ ą 3

ff
ă p ¨ 2{sall ` pimax ´ i8q ¨ 2Prr J s .

Proof. Let i` “ i´ i8 and set εi “ 2{3i`
. As

řimax
i8 εi ă ř8

i“i8 εi “ 3,

Pr

«
imaxÿ

i“i8
E
“
Si

ˇ̌
h
‰ ě 3

ff
ď

imaxÿ

i“i8
Pr

“
E
“
Si

ˇ̌
h
‰ ě εi

‰
.

By Corollary 11 and Markov’s inequality

Pr
“
E
“
Si

ˇ̌
h
‰ ě εi

‰ ď 2PrrSi ě εi ^ J s ` 2Prr J s ď 2ErSi ¨ rJ ss
εi

` 2Prr J s ď 2µ̄i

εi
` 2Prr J s .

Using that µ̄i ď µ̄i8{6i`
we thus have

imaxÿ

i“i8
Pr

„
E
“
Si

ˇ̌
h
‰ ě 2

3i`

ď µ̄i8 ¨

imaxÿ

k“0

ˆ
3

6

˙k

` pimax ´ i8q ¨ 2Prr J s

ď p ¨ 2{sall ` pimax ´ i8q ¨ 2Prr J s .

Lemma 27.

Pr

»
–

i8ÿ

i“maxtinr`1. 4u
E
“
Si

ˇ̌
h
‰ ě ∆top

fi
fl ď p ¨ 2{sall ` pi8 ´ inrq ¨ 2Prr J s .

Lemma 27 is obtained by applying the following lemma on each layer between inr and i8.

Lemma 28. For i ą inr and pi ď preg{ssec,

Pr

„
Si ě 2 lnp1{piq

pi´ inrq ¨ lnpi{efq ^ J

ď pi .

32

Proof of Lemma 28. Define i` “ i´ inr and let k “ p1` δqµ̄i for some δ ą 0. By Lemma 19

PrrSi ą k ^ J s ď
ˆ

eδ

p1` δqp1`δq

˙µ̄i

ă
ˆ

e

p1` δq
˙p1`δqµ̄i

“
´eµ̄i

k

¯k

.

As µ̄i “ µ̄inr ¨ f
i`

inr !
i! and µ̄inr ă lnpssec{pregq ď lnp1{piq we have

PrrSi ą k ^ J s ď
´eµ̄i

k

¯k

ď
˜
e lnp1{piq

k
¨ f

i`
inr!

i!

¸k

.

By Stirling’s approximation,

inr!

i!
ď ei

` ¨ pinrq
inr

ii
“ ei

` ¨
ˆ
inr
i

˙inr

¨ 1

ii` ď
´e
i

¯i`

and thus

PrrSi ě k ^ J s ď
˜
e lnp1{piq

k
¨
ˆ
ef

i

˙i`¸k

.

Define k “ 2 lnp1{piq
i` lnpi{efq and

η “ 2

e
¨ pi{efqi`

i` lnpi{efq “
2pi{efqi`{e
ln
`pi{efqi`˘ “ 2pi{efqi`{e

ln
`pi{efqi`{e˘` 1

ě exp
´
W

´
pi{efqi`{e

¯¯
,

with the final inequality due to Lemma 24, as i{ef ě 1 when i ě 2. Hence η lnpηq ě pi{efqi`{e or,
equivalently, η¨e

pi{efqi` ě 1{ lnpηq. Observe that k “ lnp1{piq ¨ η¨e
pi{efqi` and thus

PrrSi ě k ^ J s ď
˜
e lnp1{piq

k
¨
ˆ
ef

i

˙i`¸k

ď
˜
e

2
¨ i` lnpi{efq ¨

ˆ
ef

i

˙i`¸k

ď
ˆ
1

η

˙ lnp1{piq
lnpηq “

ˆ
1

η

˙logηp1{piq
“ pi .

We can now prove Lemma 27:

Proof of Lemma 27. First, note that i8´inr ď ntop “ log6plnpssec{pregq¨sall{pq. This bound comes
from the fact that µ̄inr ď lnpssec{pregq while µ̄i8´1 ě p{sall and µ̄i`1 ď µ̄i{6 for all i ě 2.

For the i’th layer let ki “ lnp1{ptopq ¨ 2
i` lnpi{efq ` 1 where i` “ i´ inr. By Lemma 28 and Corol-

lary 11, Pr
“
E
“
Si

ˇ̌
h
‰ ą ki

‰ ă 2ptop ` 2Prr J s. As ptop ď p{pntop ¨ sallq, we have

i8ÿ

maxtinr`1, 4u
Pr

“
E
“
Si

ˇ̌
h
‰ ą ki

‰ ď p ¨ 2{sall ` pi8 ´ inrq ¨ 2Prr J s .

33

Left is to show that
ř

ki ď ∆top. As i ě 4 we have lnpi{efq ą 0 and the ki’s are decreasing.
Their sum can thus be bounded by a definite integral:

i8ÿ

i“maxtinr`1, 4u

2

i` lnpi{efq ď
i8´inrÿ

j“1

2

j lnppj ` 3q{efq

ď
4ÿ

j“1

2

j lnp4{efq `
i8´inrÿ

j“5

2

j lnpj{efq

ď 25{6
lnp4{efq `

ż i8´inr

4

2

x lnpx{efq dx

“ 25{6
lnp4{efq `

ż pinf ´inrq{ef

4{ef
2

u lnpuq du

“ 25{6
lnp4{efq ` 2 pln lnppi8 ´ inrq{efq ´ ln lnp4{efqq

ď 3.9 ` 2 ln lnpntopq .
Hence

i8ÿ

i“maxtinr`1,4u
ki ď 2 lnp1{ptopq ¨ p2` ln lnpntopqq ` ntop .

Finally, we are now ready to prove Theorem 15

Theorem 15. If inr ě 3, then

Pr

«
imaxÿ

i“inr

Si ă
imaxÿ

i“inr

E
“
Si

ˇ̌
h
‰´∆nonreg

ff
ă p ¨ 6{sall ` pimax ´ inrq ¨ 2Prr J s .

Proof. Each Si is non-negative, and thus Pr
“
Si ă E

“
Si

ˇ̌
h
‰´ k

‰ ď Pr
“
E
“
Si

ˇ̌
h
‰ ą k

‰
for any k. By

Lemmas 25 to 27, we thus have

Pr

«
imaxÿ

i“inr

Si ă
imaxÿ

i“inr

E
“
Si

ˇ̌
h
‰´∆nonreg

ff
ď Pr

«
imaxÿ

i“inr

E
“
Si

ˇ̌
h
‰ ą ∆nonreg

ff

ă p ¨ 6{sall ` pimax ´ inrq ¨ 2Prr J s
as ∆nonreg “ ∆inr `∆top ` 3.

5.6 No Big Layers

We finally prove Lemma 16 which handles layers beyond imax. For this, we require our new Theo-
rem 17 for bounding the probability that the selected set is linearly dependent. We postpone the
proof of this theorem to Section 6.

34

Lemma 16. Let s ď |Σ| {2 be the number of selection bits and imax “ lnp|Σ|d´22sq. Then

Pr

« 8ÿ

i“imax`1

E
“
Si

ˇ̌
h
‰ ą 0

ff
ď

ˆ
1

|Σ|
˙d´3

` 3c`1

ˆ
3

|Σ|
˙d´1

`
ˆ

1

|Σ|
˙|Σ|{2´1

.

Proof. Note that tSiuiPN is a non-increasing sequence. Hence

E
“
Si

ˇ̌
h
‰(

iPN is non-increasing, and

it suffices to prove that Pr
“
E
“
Si

ˇ̌
h
‰ ą 0

‰
is small for i “ imax ` 1.

Let select : Σc ˆ r2ss Ñ r2s be the selector function defining the set X (referred to as ’f ’ in
Section 3). For each character α P Σ and value r P r2ss of the selection bits, define

Xα, r “

x P S | selectpx, hr0spxq ‘ rq “ 1^ hr1spxq “ α

(
.

That is, Xα, r is the set of keys with final derived character α which will be selected if Tc`drαs “ r.
Note that Xα, r is completely determined by h. When conditioning on h, Xα is thus uniformly
distributed among the values tXα, rurPr2ss . We will show that, w.h.p., |Xα, r| ď imax for all r. This

entails that |Xα| ď imax, in turn giving that E
“
Si

ˇ̌
h
‰ “ 0.

Recall that, for each element x P A, there exists exactly one value r1 such that selectpx, r1q “ 1.
Thus the sets Xα, r partition A, and each x is distributed uniformly among the sets. As the
expected number of selected elements is |A| {2s “ Er|X|s “ f |Σ|, the expected size of each set will
be Er|Xα, r|s “ |A| {p|Σ|2sq “ f ď 1{2.

As h is a tornado tabulation function (albeit with only d´ 1 derived characters), we can invoke
Theorem 4 to bound the probability of Xα, r being large. Setting p1` δq “ 1{f ¨ lnp|Σ|d´22sq ą e2

we obtain

Pr
”
|Xα, r| ě ln

´
|Σ|d´22s

¯
^ I

´
rhăc`d pXα, rq

¯ı
ă

ˆ
e

1` δ

˙p1`δqf

“
ˆ
1

e

˙lnp|Σ|d´22sq

“ 1

|Σ|d´22s
.

By Theorem 17 we further have, plugging in expected size µ{|Σ| “ f , ratio ’f ’ of 1{p2|Σ|q, and
d´ 1 derived characters,

Pr
”
 I

´
rhăc`d pXα, rq

¯ı
ď 3c|Σ|

n
¨ 3

ˆ
µ

|Σ|
˙3ˆ 3

|Σ|
˙d

`
ˆ

1

2|Σ|
˙|Σ|{2

.

Adding the two error probabilites, and performing a union bound over all |Σ| ¨ 2s sets Xα, r, the

35

statement follows:

Pr
”
DXα, r : |Xα, r| ě ln

´
|Σ|d´22s

¯ı
ď |Σ|2s ¨ Pr

”
|Xα, r| ě ln

´
|Σ|d´22s

¯ı

ď |Σ|2s
˜

1

|Σ|d´22s
` 3c|Σ|

n
¨ 3

ˆ
µ

|Σ|
˙3ˆ 3

|Σ|
˙d

`
ˆ

1

2|Σ|
˙|Σ|{2¸

ď 1

|Σ|d´3
` 3c|Σ|2

µ
¨ 3

ˆ
µ

|Σ|
˙3ˆ 3

|Σ|
˙d

` |Σ|2s
ˆ

1

2|Σ|
˙|Σ|{2

“ 1

|Σ|d´3
` 9 ¨ 3c

ˆ
µ

|Σ|
˙2ˆ 3

|Σ|
˙d´1

` |Σ|2s
ˆ

1

2|Σ|
˙|Σ|{2

ď 1

|Σ|d´3
` 3c`1

ˆ
3

|Σ|
˙d´1

`
ˆ

1

|Σ|
˙|Σ|{2´1

,

where we’ve used that µ “ n{2s and assumed that s ď |Σ|{2.

6 Proof of Theorem 17

In this section, we describe the main ingredients needed for the proof of Theorem 17 and how they
can be combined together.

Theorem 17. Let h “ ph ˝ rh : Σc Ñ R be a random (simple) tornado tabulation hash function
with d derived characters and f as described above. If µ ď Σ{2, then the event Iph̃pXqq fails with
probability at most

3c |Σ| {n ¨ 3µ3p3{|Σ|qd`1 ` f |Σ|{2 (13)

We first note that Theorem 3 holds for a simpler version of tornado tabulation hashing, which
we call simple tornado hashing. In this version, we do not change the last character of the (original)
key. Formally, for a key x “ x1 ¨ ¨ ¨ xc, its corresponding derived key rx “ rx1 . . . rxc`d is computed as

rxi “
#
xi if i “ 1, . . . , c
rhi´c prx1 . . . rxi´1q otherwise.

The main idea is to revisit the proof of Theorem 3 in [BBK`23]. Note that, if the set of derived
keys in h̃pXq are linearly dependent, then their prefixes are also linearly dependent (i.e., when we
consider only the first c` d´ 1 or c` d´ 2 characters). The main idea is then to argue that, if the
derived keys in h̃pXq are linearly dependent, then we can find a certain obstruction that captures
how the keys remain linearly dependent as we add derived characters one at a time. Each such
obstruction in unlikely to occur. By performing a union bound over all such possible obstructions,
we then get the bound in Theorem 3.

6.1 Preliminaries

Position Characters, Generalized Keys and Linear Independence We view any key x P Σb

as a set of b position characters p1, x1q . . . pb, xbq. We can then define the symmetric difference of
two keys as being the symmetric difference of the corresponding sets of position characters. A

36

generalized key can be any subset of position characters t1 . . . bu ˆ Σ. For such a generalized key
x, we can then define

xris “ tpi, aq P xu, xră is “ tpj, aq P x | j ă iu
and

xrď is “ tpj, aq P x | j ď iu.
This also extends naturally to any set X of generalized keys, i.e.,

Xră is “ txră is | x P Xu.
When it comes to defining linear independence over a set Y of generalized keys, we can define

△Y to be the symmetric difference of all the subsets of position characters, i.e., the set of position
characters that appear an odd number of times in the subset in Y . If △Y is the empty set (and
hence, every position character appears an even number of times), we say that the set Y is a zero-
set. If Y contains a zero-set, then we say that Y is linearly dependent. Otherwise, we say that the
(generalized) keys in Y are linearly independent.

Levels and Matching For the sake of consistency, we follow the setup in [BBK`23]. The idea is
to bound the probability that the keys in h̃pXq are dependent with respect to each derived character
separately.

To this end, for i “ 1, . . . , d, we focus on position c`i of a derived key and refer to such positions
at being at level. Linear dependence in the derived keys means that, for each level, we can pair up
derived keys that have the same derived character at that level. Formally, we say that a matching
M Ď `|Σ|c

2

˘
on the keys Σc is an i-matching if for all tx, yu PM , it holds that rxrc` is “ ryrc` is. We

further say that such a matching is an i-zero, i-dependent, or i-independent if the corresponding

DiffKeyspM, iq “ tprx△ ryqrď c` is | tx, yu PMu
is a zero-set, linearly dependent, or linearly independent, respectively. Similarly, we say that a set
Z is of (original) keys is i-zero, i-dependent, or i-independent if the set of prefixes rZrď c ` is is
a zero-set, linearly dependent, or linearly independent, respectively, where rZ denotes the set of
derived keys of keys in Z. The following observation from [BBK`23] connects the notions:

Observation 29 (Observation 11 in [BBK`23]). Let M be a partial matching on Σc and Z “ Ť
M .

Then M is an i-zero matching iff Z is an i-zero set. Furthermore, if M is i-dependent then Z is
also i-dependent (but not vice versa).

Moreover, when moving from one level to the next, we will use the following observation:

Observation 30 (Observation 12 in [BBK`23]). If Z is an i-zero set, then there is a perfect
j-matching on Z for every level j ď i.

The obstructions we build will consist of matching at each level. To bound the probability that
such an obstruction exists, we will use the following bound repeatedly:

Lemma 31 (Lemma 10 in [BBK`23]). Let M be a partial matching on Σc. Conditioning on M
being pi´ 1q-independent, M is an i-matching with probability 1{|Σ||M |.

37

6.2 Defining an Obstruction on the Top Two Levels

We distinguish between the top two levels d and d´1, and the remaining bottom levels 1, . . . , d´2.
The obstruction on the top two levels is defined similarly to how it is defined in [BBK`23]. Namely:
if a set of derived keys rX is linearly dependent, then it must be the case that there exists a mininal
subset Z Ď X that is a d-zero set ([BBK`23] had some special concerns about query keys, but
these query keys are not considered here).

By Observation 30, the set rZ exhibits a (perfect) d-matching Md̊ and a (perfect) pd ´ 1q-
matching Md̊´1 o(we also have perfect matchings on all the other levels). We follow the edges of
these two matching in order to build our obstruction. Namely, these two matchings form alternating
cycles on the keys in Z. For every such cycle, we choose an arbitrary start vertex x1 and follow
the edge from Md̊´1. We land at some other vertex x2 and the follow the edge from Md̊ , and so on
an so forth. When we are done with one cycle, we continue with the next one in a similar fashion.
We end up with a sequence of vertices x1, . . . , x|Z| that describe all vertices in Z such that edges
tx1, x2u, tx3, x4u, . . . , tx|Z|´1, x|Z|u describe the edges in Md̊´1.

Among the edges in Md̊´1, we now identify a minimal pd ´ 2q-dependent sub-matching Md´1

by defining w as the smallest value for which tx1, x2u, . . . , txw´1, xwu. We let W “ tx1 . . . xwu be
the support of this sub-matching and note that w is even. We also let Md be to be the restriction
of Md̊ to tx1 . . . xw´1u (without the last vertex we visit). Note that Md how has w{2 ´ 1 edges.
We use the following simple lemma that was not part of [BBK`23]:

Lemma 32. There is exactly one submatching Ld´1 Ď Md´1 such that Ld´1 is a pd ´ 2q-zero
matching.

Proof. First, we know Ld´1 exists because Md´1 is pd ´ 1q-dependent. Suppose we had an al-
ternative L1

d´1 ‰ Ld´1. Then L2
d´1 “ L1

d´1∆Ld´1 is also a pd ´ 1q-zero matching, but since
Ld´1 and Ld´1 both include txw´1, xwu, L2

d´1 does not include txw´1, xwu, but this means that
tx1, x2u, . . . , txw´3, xw´2u is d´ 2-dependent.

Finally, we define Ld´1 uniquely as in Lemma 32, and set Zd´1 “ Ť
Ld´1. Then Zd´1 is a

pd´ 2q-zero set which will play a very crucial role.

The Obstruction on the First Two Levels For the purposes of our argument, we distinguish
between two cases depending on w. We define wmax to be the smallest even number above 0.63 |Σ|.
In our obstruction above, we do not want w ą wmax, so if w ą wmax, we reduce w to wmax. In
this case, Md´1 “ tx1, x2u, . . . , txw´1, xwmaxu is pd ´ 2q-independent with at least w{2 ´ 1 edges.
If w ą wmax, we say that the obstruction was truncated. Otherwise, we say that the obstruction
is complete. We then define the following obstruction O “ pW,Md,Md´1, Ld´1q for the first two
levels:

• A set of keys W Ď Σc of some even size w.

• A matching Md of size w{2´ 1 on W .

• A perfect matching Md´1 on W . This matching also contains a pd´2q-independent submatch-
ing M 1

d´1 with at least w{2 ´ 1 edges. If w ą wmax, (the truncated case), M 1
d´1 “ Md´1.

Otherwise, M 1
d´1 is Md´1 minus any edge from Ld´1.

38

• If w ď wmax (the complete case), we have a submatching Ld´1 ĎMd´1 with support Zd´1 “Ť
Ld´1 and size less than wmax. Here Zd´1 should contain at least one vertex not matched

by Md (this corresponds to the vertex xw that we do not mention explicitly among the
components). Note that in the truncated case, we do not store Ld´1 and Zd´1. In this
case, we are satisfied having the pd ´ 1q-independent Md and the pd ´ 2q-independent Md´1

matching with a total of at least w ´ 2 edges.

6.3 Confirming an Obstruction

For an obstruction O “ pW,Md,Md´1, Ld´1q to occur among the selected keys, the tornado tabu-
lation hash function h “ ph ˝ rh must satisfy the following conditions:

1. The keys in W are all selected, that is, W Ď Xf,h.

2. Either W is d-independent, or it is minimally d-dependent. A minimally d-dependent W
corresponds to the case where W “ Z.

3. Md is a d-matching.

4. Md is pd´ 1q-independent.
5. Md´1 is a pd´ 1q-matching.

6. Md´1 contains a pd´ 2q-independent submatching M 1
d´1 with at least w{2´ 1 edges.

7. For a complete obstruction, Zd´1 “ Ť
Ld´1 is a pd´ 2q-zero set.

For a given obstruction we use p1q, p2q, . . . to denote the event where the tornado tabulation hash
function satisfies each of the conditions given above.

When a hash function h satisfies the above conditions, we say that it confirms an obstruc-
tion, and we want to prove that this happens with small probability. Our probability bound is
parameterized by w “ |W |.

We bound the probability of satisfying all conditions as

Pr

«
7č

i“1

piq
ff
ď Prrp6q X p7qs ¨ Prrp5q | p6q X p7qs ¨ Pr

«
p3q

ˇ̌
ˇ̌
ˇ
č

ią3

piq
ff
¨ Pr

«
p1q

ˇ̌
ˇ̌
ˇ
č

ią1

piq
ff
.

For Prrp1q | Şią1piqs, by conditioning on (2) we know that at least w´1 derived keys are hashed

independently by ĥ. As each is selected with probability p, we get

Pr

«
p1q

ˇ̌
ˇ̌
ˇ
č

ią1

piq
ff
ď pw´1 .

For a truncated obstruction, however, we know that W is a strict subset of Z, and hence W is
d-independent, giving

Pr

«
p1q

ˇ̌
ˇ̌
ˇ
č

ią1

piq
ff
ď pw .

39

For Prrp3q | Şią3piqs, by conditioning on (4) we know that all |Md| “ w{2 ´ 1 diff-keys from

Md are hashed independently by rhd, so

Pr

«
p3q

ˇ̌
ˇ̌
ˇ
č

ią3

piq
ff
ď 1{|Σ|w{2´1 .

For Prrp5q | p6q X p7qss, by conditioning on (6) there exists a pd ´ 2q-independent M 1
d´1 whose

keys are hashed independently by rhd´1, so the probability of Md´1 (and thus also M 1
d´1) being a

pd´ 1q-matching is at most
Prrp5q | p6q X p7qs ď 1{|Σ|w{2´1 .

Finally, for truncated obstructions we apply the trivial bound Prrp6q X p7qs ď 1, while for
complete obstructions we apply Lemma 33, given below, with |Zd´1| ď |W | “ w to obtain

Prrp6q X p7qs ď Prrp7qs ď p3{|Σ|qd´2 ¨ 2w{4`1 .

Putting it all together, we obtain the following bounds on h confirming a given obstruction
O “ pW,Md,Md´1, Ld´1q with |W | “ w

Prrh confirms truncated Os ď |Σ|2 ¨ pp{|Σ|qw
Prrh confirms complete Os ď pw´1|Σ|2´wp3{|Σ|qd´22w{4`1 .

Lemma 33 ([BBK`23]). If zd´1 “ |Zd´1| ď 0.63 ¨ |Σ| and |Σ| ě 256 then

Pr
rhďd´2

rZd´1 is an pd´ 2q-zero sets ď p3{ |Σ|qd´2 ¨ 2zd´1{4`1. (15)

Proof sketch. The bound is implicitly present in [BBK`23], so we sketch the arguments here and
refer to reader to the appropriate sections in [BBK`23]for details. The main idea is to proceed
similarly to how we defined Ld´1 (and Zd´1) from Md´1 (Section 3.2 in [BBK`23]). Namely, while
going through the matching Mi (which is (minimally) i-dependent), we identify the submatching Li

which is an i-zero matching. This then gives rise to a matching Mi´1 on Zi´1 (which is the support
of Li´1. We do this for every layer from i “ d ´ 2 to i “ 1. This describes a general obstruction
that includes all the matching Mi and supports Zi(Section 3.3 in [BBK`23]). The probability that
an obstruction is confirmed is bound in Lemma 14 in [BBK`23]. The difference with what we have
is that the only care about the part of the obstruction that deals with levels 1, . . . , d´ 2 (excluding
the top two levels). In particular, the event that Zd´1 is a pd ´ 2q-zero set corresponds to the

conjunction
Źd´2Cpiq

i“1 over all possible realizations of Md´2, Zd´2,Md´3 etc. We get the following:

Pr
rhďd´2

rZd´1 is an pd´ 2q-zero sets ď
d´2ź

i“1

max
Zi`1

˜ ÿ

Mi,ei,Li,Zi

|Σ|1´|Mi|
¸

ď 2zd`1{4´1 ¨
d´2ź

i“1

max
Zi`1

˜ ÿ

Mi,ei,Li,Zi

|Σ|1´|Mi|
N

2p|Zi`1|´|Zi|q{4
¸

.

In sections 4.2 and 5.1 (specifically Eq (21)), it is shown that:

max
Zi`1

˜ ÿ

Mi,ei,Li,Zi

|Σ|1´|Mi|
N

2p|Zi`1|´|Zi|q{4
¸
ď 4 ¨ p3{|Σ|qd´2 .

Since 4p3{ |Σ|qd´22zd´1{4´1 “ p3{ |Σ|qd´22zd´1{4`1, we get the claim.

40

6.4 Union Bounds over All Obstructions

To obtain the bound stated in Theorem 17 we perform a union bound over the probability of
confirming each possible obstruction. As we have defined two types of obstructions, we treat these
separately.

Truncated obstructions We start with the case where the obstruction has been truncated.
As our bound on the probability of a truncated obstruction is confirmed is identical for all

truncated obstructions (they are all of size |W | “ wmax) we just have to count the number of
obstructions O “ pW,Md,Md´1q to obtain the first part of our union bound.

In the following we let w “ wmax for improved readability. The set W can be specified in`
n
w

˘ ď nw

w! ways. The matching Md of size w{2 ´ 1 over t1, . . . , wu can be described as a perfect
matching on W with one edge removed, giving pw ´ 1q!! ¨ w{2 possibilities 2. The matching Md´1

is perfect, so it can be chosen in pw ´ 1q!! ways. In total, this means that there exists at most
ppw ´ 1q!!q2 ¨ w{2 ¨ nw{w! choices for O “ pW,Md,Md´1q.

We conclude that

Prrh confirms a truncated obstructions ď
ÿ

truncated O
Prrh confirms Os

ď w

2
¨ n

w

w!
¨ ppw ´ 1q!!q2 ¨

ˆ
p

|Σ|
˙w

¨ |Σ|2

“ fw ¨ ppw ´ 1q!!q2
2pw ´ 1q! ¨ |Σ|2

“ fw ¨ pw ´ 1q!!
2pw ´ 2q!! ¨ |Σ|

2 ,

using that np{|Σ| “ µ{|Σ| “ f and pw´1q! “ pw´1q!! ¨pw´2q!!. Note that pw´1q!!{pw´2q!! ď 3{2
for all w ě 4. As w “ wmax ě 0.63|Σ|, we have fw ď f |Σ|{2 ¨ f0.13|Σ| ď f |Σ|{2 ¨ p1{2q0.13|Σ|.

For |Σ| ą 100 we have 3
2¨2 ¨ |Σ|2 ¨ p1{2q0.13|Σ| ă 1, and thus

Prrh confirms a truncated obstructions ď f |Σ|{2 .

Complete Obstructions For complete obstructions where w ď wmax we need to be more careful,
as the probability of an obstruction being confirmed depends on its size w “ |W |. We will consider
each value of w in turn, and let P pwq “ Prrh confirms a complete obstruction of size ws. Summing
P pwq over all even w P t4, 6, . . . , wmaxu we get a bound on Prrh confirms a complete obstructions.

Instead of the set W we will let the first component of the obstruction be a vector ~W “
px1, . . . , xwq P Sw. Before specifying ~W , however, we will define Md,Md´1, Ld´1 as matching on
the index set t1, . . . , wu.

We specify the obstruction in the following order:

1. First we choose which indices correspond to Md and Md´1.

2. Next we specify which edges of Md´1 are contained in Ld´1.

3. Then we describe which keys of S go into the locations of ~W corresponding to Zd´1 “ Ť
Ld´1.

2We use the notation, k!! “ k ¨ pk ´ 2q ¨ pk ´ 4q ¨ . . . ¨ 1.

41

4. Finally, we choose which keys go into the remaining positions of ~W .

In this way each obstruction will be accounted for w! times. Note that for Zd´1 “
Ť

Ld´1 to be
a pd ´ 2q-zero set, then Zd´1 must also be a zero set – the keys themselves, before computing any
derived characters. Thus

P pwq ď
ÿ

Md,Md´1,Ld´1,
~W“px1,...,xwqPSw ,
∆iPZd´1

xi“H

Pr
”
h confirms O “ p ~W,Md,Md´1, Ld´1q

ı

w!
.

In the following, we bound the number of ways to perform each of the four steps outlined above.

1. As discussed in the previous section, Md,Md´1 can be chosen among the w indices in
ppw ´ 1q!!q2 ¨ w{2 ways.

2. Let ti, ju be the two indices of t1, . . . , wu not covered by Md. At least one of these indices
must be covered by Ld´1, as discussed in Section 6.2. We distniguish between two cases: If ti, ju P
Md´1, this edge must be included in Ld´1, giving at most 2|Md´1|´1 “ 2w{2´1 valid submatchings
of Md´1.

If ti, ju R Md´1, then there exists edges ti, i1u and tj, j1u in Md´1. We can include one, the
other, or both of these in Ld´1, along with any subset of the remaining |Md´1|´2 “ w{2´2 edges,
giving 3 ¨ 2w{2´2 options.

The choice made in step 1 decides which case applies, and thus there are at most 3 ¨2w{2´2 ways
of performing step 2.

3. Let z “ |Zd´1| “ 2 |Ld´1|. As these z entries of ~W must form a zero set, Corollary 39 states
that the keys for these positions can be chosen in at most 3c ¨ nz´2 ways.

4. The remaining w ´ z entries of ~W can be chosen in at most nw´z ways.
Multiplying the number of choices for each of the four steps, the total number of complete

obstructions of size w is bounded by

3 ¨ 2w{2´2 ¨ ppw ´ 1q!!q2 ¨ w{2 ¨ nw´2 ¨ 3c

and hence

P pwq ď 3 ¨ 2w{2´2 ¨ ppw ´ 1q!!q2 ¨ w{2 ¨ nw´2 ¨ 3c ¨ p
w´1|Σ|2´wp3{|Σ|qd´22w{4`1

w!

“ 3

2
¨ 23w{4´1 ¨ ppw ´ 1q!!q2

pw ´ 1q! ¨
ˆ
pn

|Σ|
˙w´1

¨ |Σ|
n
¨ 3c ¨

ˆ
3

|Σ|
˙d´2

“ 9 ¨ 23w{4´2 ¨ pw ´ 1q!!
pw ´ 2q!! ¨ f

w´1 ¨ 3
c

n
¨
ˆ

3

|Σ|
˙d´3

“ 23w{4´2

3
¨ pw ´ 1q!!
pw ´ 2q!! ¨ f

w´4 ¨ µ3 ¨ 3
c

n
¨
ˆ

3

|Σ|
˙d

.

What is left is to bound
řwmax

even w“4 P pwq. Let gpwq “ 23w{4´2

3 ¨ pw´1q!!
pw´2q!! ¨ fw´4.

42

Observation 34.
wmaxÿ

even w“4

gpwq ď 3

Proof. First, observe that gpw` 2q “ w`1
w ¨ 23{2f2 ¨ gpwq ď w`1

w ¨ 0.71 ¨ gpwq, when f ď 1{2. For any
fixed k we thus have

wmaxÿ

even w“k

gpwq ď gpkq ¨
8ÿ

i“0

ˆ
k ` 1

k
¨ 0.71

˙i

.

For k “ 4 we thus have

wmaxÿ

even w“4

gpwq ď gp4q ¨ 9 “ 9 ,

as gp4q “ 2
3 ¨ 32 “ 1.

Hence
řwmax

even w“4 P pwq ď 9µ3p3{|Σ|qd ¨ 3c{n, and the probability that h confirms any obstruction is
bounded by 9µ3p3{|Σ|qd ¨ 3c{n` f |Σ|{2. Thus we get the claim in Theorem 17.

7 Proof of Theorem 1 and Theorem 2

As mentioned earlier, Theorem 2 will follow from Theorem 1 and we prove this in Section 7.3. In
order to prove our main Theorem 1, we start with the following quite technical result. In this
result, Jmax denotes the event that there are no large layers of Lemma 16, namely the event that
E
“
Si

ˇ̌
h
‰ “ 0 for all i ě imax.

Theorem 35. If |Σ| ě 211 and µ P r|Σ|{4, |Σ|{2s, then the following holds for any p ą 0

Pr
”
X ă µ´a

lnp1{pqµ ¨ γ1 ´ γ2

ı
ă 3p` Perror ,

where Perror “ imax ¨ 2Prr J s ` Prr Jmaxs.
The definitions of γ1 and γ2 are quite involved and relies on a number of symbols that will be

defined and motivated in Section 5.1. For |Σ| ě 211, γ1 can be considered to be approximately 2
while γ2 is of order rOplnp1{pq ¨ ln lnpµqq. The full definition of γ1 and γ2 can be found in table 1 on
page 44.

7.1 Proof of Theorem 35

The proof essentially combines the analyses done for the different layers in Section 5.

Proof. The proof will proceed by applying a union bound over the contribution of all layers. We
begin by noting that we can assume that lnp1{pq ď µ{8.6. Namely, we claim that lnp1{pq ą µ{8.6
implies that γ2 ą µ, which, in turn, makes the event in Theorem 35 trivially false. To see this, we
note that γ2 ě 8.6 lnp1{pq always, since the following hold regardless of p:

• ∆inr ě 1.33 ¨ e ¨ lnp1{pq « 3.61 ¨ lnp1{pq because ssec{preg ě 1{p and preg ď p

43

Symbol Definition Description

ssec 20
Scales error probability of secondary
events

sall 160 Scales error probability in each layer

preg
p

log6

´
µ{2

lnpssec{pq
¯ ¨ 1

sall

Threshold for error probability in reg-
ular layers

inr min ti : µ̄i ă lnpsall{pregqu First non-regular layer

imax lnp|Σ|d´22sq
Maximum number of layers with non-
zero expected size (whp), where s is
the number of selection bits. Defined
in Lemma 16.

ntop log6plnpssec{pregq ¨ sall{pq Bound on the number of layers han-
dled by Lemma 27

ptop min
!
preg
ssec

, p
ntop¨sall

)
Error probability for each layer in
Lemma 27

ε3 p2`?6qalnpssec{pq{|Σ| ` p12 lnp1{pq ` 6q{µ Stretch factor of multiplicative devia-
tion of Theorem 12

∆reg 0.181
a

lnp1{pqµ ` 0.066
b

µ
lnp1{pq `

?
2

Total deviation of regular layers, from
4 and up (Theorem 14)

∆inr 1.33e lnpssec{pregq ` 1 Deviation of layer inr (Lemma 25)

∆top 2 lnp1{ptopq ¨ p2` ln lnpntopqq ` ntop
Deviation of layers inr` 1 through i8
(Lemma 27)

∆nonreg ∆inr `∆top ` 3
Total deviation of non-regular layers,
inr and above (Theorem 15)

γ1
a

7{3 ¨ p1` ε3q ` 0.181
Multiplicative term of deviation in
Theorem 35

γ2 ∆reg ´ 0.181
a

lnp1{pqµ `∆nonreg ` lnp1{pq Additive term of deviation in Theo-
rem 35

Table 1: Overview of the symbols used in the statement of Theorem 35. See discussion in Section 5.1.

44

• ∆top ě 4 ¨ lnp1{pq since ptop ď p

• ∆reg ě 0.181
a

lnp1{pqµ by definition .

Assuming that lnp1{pq ď µ{8.6, together with the assumptions in the theorem statement, gives
us that µ̄2 ě lnpssec{pq. This means that layers 1 and 2 are certainly regular, i.e., inr ě 3 (recall
that inr was defined as the smallest index for which the corresponding layer is not regular). We
now distinguish between whether layer 3 is also regular or not.

If layer 3 is regular, we use Theorem 12 to bound the contribution of the first three layers. This,
together with the contribution of the remaining regular layers from Theorem 14, gives us:

Pr

«
inr´1ÿ

i“1

Si ă
inr´1ÿ

i“1

E
“
Si

ˇ̌
h
‰´a

lnp1{pqµ ¨ γ1 ´ γ2 `∆nonreg

ff
ă 2.96p ` inr ¨ 2Prr J s .

The contribution of the non-regular layers is given by Theorem 15. If inr “ 3, i.e., layer 3 is not
regular, then note that no other higher index layer can be regular either. We then use Theorem 13
to bound the contribution of the first two layers and note that the bound is stronger than if we
had used Theorem 12 (the one for the first three layers combined). We then proceed to consider
the non-regular cases in a similar way as before.

Finally, by Lemma 16, with probability Prr Jmaxs, we can assume that the contribution from
higher layers is zero since:

8ÿ

i“imax`1

E
“
Si

ˇ̌
h
‰ “ 0 ,

and hence
imaxÿ

i“1

E
“
Si

ˇ̌
h
‰ “ µ .

At this point, we get that:

Pr
”
X ă µ´a

lnp1{pqµ ¨ γ1 ´ γ2

ı
ă 3p` imax ¨ 2Prr J s ` Prr Jmaxs ,

which matches the claim.

We now bound the Perror terms by further assuming that c and d are not too large. Note that
similar bounds can be obtained even for bigger c and d.

Lemma 36. For |Σ| ě 211 and c ď ln |Σ|, the following holds:

Perror ď pc` d´ 2q lnp|Σ|q ¨
˜
49

ˆ
3

|Σ|
˙d´3

` 3

ˆ
1

2

˙|Σ|{2¸
.

Proof. Recall that imax “ lnp|Σ|d´2 ¨ 2sq. We now derive expressions for imax, Prr J s and
Prr Jmaxs. Since c ď |Σ|{p2 log |Σ|q by assumption and 2s ď |Σ|c (the universe), we have that

imax ď lnp|Σ|d´2 ¨ |Σ|cq ď pc` d´ 2q ¨ ln |Σ| .

45

From Theorem 8, we also have that:

Prr J s ď 24p3{|Σ|qd´3 ` 1{2|Σ|{2

Finally, we have that

Prr Jmaxs ď
ˆ

1

|Σ|
˙d´3

` 3c`1

ˆ
3

|Σ|
˙d´1

`
ˆ

1

|Σ|
˙|Σ|{2´1

Thus

2imax Prr J s ď 2pc` d´ 2q lnp|Σ|q ¨
˜
24

ˆ
3

|Σ|
˙d´3

`
ˆ
1

2

˙|Σ|{2¸
.

Note that p1{|Σ|qd´3 ` 3c`1{|Σ|p3{|Σ|qd´1 ď p3{|Σ|qd´3 and p1{|Σ|q|Σ|{2´1 ă 1{2|Σ|{2. We have

Perror “ imax ¨ 2Prr J s ` Prr Jmaxs

ď pc` d´ 2q lnp|Σ|q ¨
˜
49

ˆ
3

|Σ|
˙d´3

` 3

ˆ
1

2

˙|Σ|{2¸
.

7.2 Proof of Theorem 1

With the technical Theorem 35 in hand, we can now prove our main Theorem 1. The proof is
technical but the goal is clear: To unwind the unwieldy expression expressions of Theorem 35. We
restate the theorem below

Theorem 1. For any b ě 1 and c ď ln s, if s ě 216 ¨ b2, and µ P rs{4, s{2s. For any δ ą 0,

Prr|X| ă p1´ δqµs ă 3 exp

ˆ´δ2µ
7

˙
` pc` b` 1q lnpsq ¨

˜
49

ˆ
3

s

˙b

` 3

ˆ
1

2

˙s{2¸
. (8)

Proof. Let b “ d´3. We will show that γ1` γ2?
lnp1{pqµ ď

?
7 whenever p, µ, and |Σ| obey the stated

restrictions, such that the theorem follows from Theorem 35 and Lemma 36. Before tackling γ1

46

and γ2, however, we will bound the involved symbols in terms of parameters |Σ|, µ and p:

ε3 “ p2`
?
6q
d

lnpssec{pq
|Σ| `

1
2 lnp1{pq ` 6

µ

ď p2`?6q
d

lnp1{pq ` lnp20q
|Σ| ` 2 lnp1{pq ` 24

|Σ| ,

preg ě p

160 ¨ log6pµq
,

lnpssec{pregq ď lnp1{pq ` ln lnpµq ` 8.1

ntop ď log6p1{pq ` log6plnpssec{pregqq ` log6p160q
ď lnp1{pq ` ln ln lnpµq ` 4 ,

lnp1{ptopq ď lnp1{pq ` lnp160q `max tln lnpµq, lnpntopqu
ď lnp1{pq ` ln lnp1{pq ` ln lnpµq ` 6.5 .

Keeping µ fixed, we see that our bound on γ1` γ2?
µ lnp1{pq is maximized either when lnp1{pq goes

towards zero (where the constant terms and dependencies on lnpµq dominate) or when lnp1{pq goes
towards infinity. Further, it is clear that both γ1 and γ2{?µ decreases for larger µ as all terms of γ2
are of order O plnp1{pq ¨ pln ln lnp1{pq ` ln lnpµqqq, with the higher-order terms found in ∆top. We
will thus evaluate the expression at the extremal points given by the restrictions of the theorem.
As the statement is trivially true when p ą 1{3, this is lnp1{pq “ lnp3q « 1.09 and p “ 1{|Σ|b.

Next, we will argue that setting b ą 1 will only lead to a stronger bound on γ2{
a

µ lnp1{pq
when p “ 1{|Σ|b, due to the stronger requirement on |Σ| that follows. To see this, let φ ě 1 such
that |Σ| “ φ ¨ 216 ¨ b2. Then, when p “ 1{|Σ|b, the following “atomics” of γ1 and γ2{

a
lnp1{pqµ are

all maximized at b “ 1.

lnp1{pqa
lnp1{pqµ “

d
lnp1{pq

µ
ď

d
b ¨ p2 lnpbq ` lnpφ ¨ 216qq

φ ¨ 214 ¨ b2 ď 0.0261

lnp1{pq ¨ ln lnpµqa
lnp1{pqµ ď ln lnpφ ¨ 214 ¨ b2q ¨

d
b ¨ p2 lnpbq ` lnpφ ¨ 216qq

φ ¨ 214 ¨ b2 ď 0.0592

lnp1{pq ¨ ln ln lnp1{pqa
lnp1{pqµ ď ln lnpb lnpφ ¨ 216 ¨ b2qq ¨

d
b ¨ p2 lnpbq ` lnpφ ¨ 216qq

φ ¨ 214 ¨ b2 ď 0.0229.

All that’s left now is to evaluate γ1`γ2{
a

µ lnp1{pq using the bounds on the underlying symbols
given above, setting p “ 1{|Σ| and p “ 1{3.

At p “ 1{3, γ1 ` γ2{
a

µ lnp3q ď 2.58 ď ?7.
At p “ 1{|Σ|, γ1 ` γ2{

a
µ lnp|Σ|q ď 2.34.

7.3 Subsampling and Proof of Theorem 2

In this section, we show a method for extending the bound of Theorem 1 to smaller µ while also
allowing us to derive stronger concentration bounds when µ ! |Σ|. For these results we require X,

47

the set of selected keys, to be defined as the preimage of a collection of hash values that are all
contained within a dyadic interval I. Then Theorem 1 bounds the number of keys hashed into I
while Theorem 8 shows that all of these keys are independently and uniformly distributed within
I with high probability. This allows us to apply a standard Chernoff bound to bound how many
of the keys hashed into I are also in X.

For a fixed keyset S with |S| “ n and a subset of hash values I Ă r2ls defineXI “ tx P S | hpxq P Iu
to be the random variable that defines the preimage of I and µI “ Er|XI |s “ |I| {2l ¨ n.
Theorem 37. If I is contained within a dyadic interval I 1 such that µI 1 P r|Σ|{4, |Σ|{2s and
|Σ| ě 216 ¨ b2, then for any p ą 1{|Σ|b it holds that

Pr
”
|XI | ă µI ´ p

?
2`?εqalnp1{pqµI ^ J 1

ı
ă 4p ` Perror

where ε “ 7 ¨ pµI{µI 1q and J 1 “ Iprhăc`dpXI 1qq is the event that the derived keys rhpXI 1qc`d´1 are
linearly independent.

Proof. Let µ1 “ Er|XI | | |XI 1 |s “ |XI 1 | ¨ µI{µI 1 . First, observe that

`
µ1 ě µI ´ t1

˘^
ˆ
|XI | ě µ1 ¨

ˆ
1´ t2

µI ´ t1

˙˙
ùñ |XI | ě µI ´ t1 ´ t2 ,

hence

Pr
“|XI | ă µI ´ t1 ´ t2 ^ J 1‰ ď Pr

“`
µ1 ă µI ´ t1 _

`|X| ă µ1 ´ t2 ^ µ1 ě µ´ t1
˘˘^ J 1‰

ď Pr
“
µ1 ă µI ´ t1 ^ J 1‰` Pr

“|X| ă µ1 ´ t2 ^ µ1 ě µ´ t1 ^ J 1‰ .

By Theorem 1,

Pr

«
|XI 1 | ă µI 1 ¨

˜
1´

d
7 lnp1{pq

µI 1

¸
^ J 1

ff
ă 3p` Perror

and thus
Pr

”
µ1 ă µI ´

a
7 lnp1{pqµI ¨ pµI{µI 1q ^ J 1

ı
ă 3p` Perror .

As J 1 implies that the elements of XI 1 are uniformly and independently distributed within I 1,
|XI | follows a binomial distribution with mean µ1. Letting t1 “

a
7 lnp1{pqµI ¨ pµI{µI 1q we thus

have for any δ ą 0 that

Pr
“|XI | ă p1´ δqµ1 ^ µ1 ě µI ´ t1 ^ J 1‰ ă exp

ˆ
´δ2pµI ´ t1q

2

˙

and hence

Pr

«
|XI | ă

˜
1´

a
2 lnp1{pqµI

µI ´ t1

¸
µ1 ^ µ1 ě µI ´ t1 ^ J 1

ff
ă exp

ˆ
´ lnp1{pqµIpµI ´ t1q

pµI ´ t1q2
˙
ď p .

Let t2 “
a

2 lnp1{pqµI . Then we have shown that

Pr
“|XI | ă µI ´ t1 ´ t2 ^ J 1‰ ă 4p ` Perror .

48

Finally, the theorem follows by observing that

t1 ` t2 “ ?µI ¨
´a

2 lnp1{pq `a
7 lnp1{pqpµI{µI 1q

¯

“a
µI lnp1{pq ¨

´?
2`?ε

¯
.

Theorem 2 follows as a direct consequence of Theorem 37

Theorem 2. Let h : rus Ñ r2ls be a Tornado Tabulation hash function with s ě 216b2 and c ď lnpsq,
A a set of keys, and X “ tx P A | hpxq ă pu for some p P r2ls. Suppose that µ “ ErXs ď s{278.
Then for any δ ă 1, it holds that

Prr||X| ´ µ| ą p1` δqµs ă 5 exp

ˆ´δ2µ
3

˙
` pc` b` 2q lnpsq ¨

˜
49

ˆ
3

s

˙b

` 3

ˆ
1

2

˙s{2¸
.

Proof. Let s “ |Σ| and b “ d´ 3. Denote the value ε defined in Theorem 37 by εs.
Define X̂ to be the number of keys x P S where hpxq ď t̂ for some t̂ P r2ls. Now, let t̂ be the

maximal power of 2 such that µ̂ “ E
”
X̂
ı
ď |Σ|{2. Note that µ̂ ě |Σ|{4.

As µ ď |Σ|{4, it follows that t̂ ě t and thus r0, t̂s is a dyadic interval containing r0, ts. Further,
we see that 7 ¨ µ{µ̂ ď 7µ ¨ 4{|Σ| ď 28pµ{sq ď 28{278.Theorem 37 then gives

Pr
”
X ă µ´ p?2`?εsq

a
lnp1{pqµ ^ J 1

ı
ă 4p` Perror

or, by substituting δ “ `?
2`?εs

˘a
lnp1{pq{µ,

Pr
“
X ă p1´ δqµ ^ J 1‰ ă 4 exp

˜
´δ2µI`?
2`?εs

˘2

¸
` Perror .

Note that p?2`?εsq2 ď 3.

Meanwhile, Theorem 4 bounds the upper tail. Observe that J 1 implies IprhpXqq, as J 1 requires
independence on a larger keyset while only inspecting the first c` d´ 1 characters of each.

Pr
”
X ą µ`a

3 lnp1{pqµ ^ J 1
ı
ď p .

By Theorem 8, we know that Prr J 1s ď 24p3{sqb ` 1{2s{2 and, from Lemma 36 that

Perror ď pc ` b ` 1q lnpsq ¨
´
49

`
3
s

˘b ` 3
`
1
2

˘s{2¯
and the theorem follows by adding the two

probabilities together.

8 Counting Zero Sets

In this section we prove Corollary 39, which allows for an efficient way of bounding the number of
ordered zero sets that can be constructed from a set of n keys, each c characters long. Trivially,
if one is looking for a zero-set of size k the first k ´ 1 keys can be chosen in at most nk´1 ways –
and at most one choice of the final key will make them form a zero set. Corollary 39 improves this
bound by a factor of n{3c.

49

Theorem 38. Let S Ď Σc be a set of n keys and let p be a generalized key. Then the number of
2t-tuples px1, . . . , x2tq P S2t such that ∆iPr2tsxi “ p is at most pp2t´ 1q!!qcnt.

Corollary 39. Let S Ď Σc with |S| “ n and k ě 4. Then at most 3c ¨ nk´2 tuples from Sk are
zero-sets.

Proof. Consider any prefix pc1, . . . , ck´4q P Sk´4. By Theorem 38 at most 3c¨n2 tuples pt1, t2, t3, t4q P
S4 satisfy ∆iPrk´4sci “ ∆iPr4sti, making the tuple a zero-set. Summing over all nk´4 prefixes, the
result follows.

Theorem 38 generalizes [DKRT15, Lemma 2] which only applies to the case p “ 0, that is,
for zero sets, but this entails that we cannot use it to prove a statement like our Corollary 39
which keeps the dependency on c, the number of characters, at 3c regardless of the size of zero
sets considered. If c and n are known, one could construct a stronger version of Corollary 39 by
applying Theorem 38 with a value of t minimizing pp2t´ 1q!!qc{nt.

We prove Theorem 38 through the following, more general, lemma. Theorem 38 follows by
setting all Ak “ S.

Lemma 40. Let A1, A2, . . . , A2t Ď Σc be sets of keys and p Ď rcs ˆ Σ a generalized key. Then the
number of 2t-tuples px1, . . . , x2tq P A1 ˆA2 ˆ ¨ ¨ ¨ ˆA2t such that

∆kPr2tsxk “ p

is at most pp2t ´ 1q!!qc ś2t
k“1

a|Ak|.
Proof of Lemma 40. The proof proceeds by induction over c. For c “ 1 we consider all ways of par-
titioning the 2t coordinates of the tuple x “ px1, . . . , x2tq into an ordered list of pairs ppxik , xjkqqtk“1

with ik ă jk. The pairs can be chosen in p2t´1q!! “ p2t´1q ¨ p2t´3q ¨ ¨ ¨ 1 ways and can be ordered
in t! ways. All mentions of pairs being before/after each other will be with reference to the chosen
ordering, not the natural ordering of the coordinates in the pair. For k P rts let xăk “ Ť

lăk txil , xjlu
be the characters appearing in the first k ´ 1 pairs of coordinates. We partition the characters of
p into an arbitrary set of pairs p “ ttα,α1u , tβ, β1u , . . .u, and we will use the notation α1 to denote
the ”neighbour” of α in this pairing, letting α2 “ α.

We fix the relationship between characters pxik , xjkq in each pair by defining the permutation
πA on Σ parameterized by a set of characters A Ď Σ. For the k’th pair pxik , xjkq we require that
xjk “ πxăk

pxikq, where
πApαq “

#
α1 if α P pzA
α otherwise.

In this way each pair of coordinates will contain two copies of the same character, except at most
|p|{2 pairs which contain two distinct characters from p, thus ensuring that these characters appear
an odd number of times overall. A pair with two copies of a character α P p can only occur when
a prior pair has provided the odd copy of α. Although this may appear to be a crucial limitation
of the process we will later show that any tuple x with ∆x “ p can be constructed from several
choices of ordered pairings. Note that all tuples x generated by this procedure will have a subset of
p as symmetric difference, with the symmetric difference being exactly p iff all |p|{2 ”mixed” pairs
pα,α1q P p occur.

50

As πA is a permutation on Σ (for any fixed set A) the number of possible assignments pxik , xjkq P
Aik ˆ Ajk with xjk “ πApxikq is at most min t|Aik | , |Ajk |u ď

a|Aik | |Ajk |. Counting all tuples in
A1 ˆ ¨ ¨ ¨ ˆA2t adhering to these restrictions, and summing over all t! ¨ p2t ´ 1q!! ordered pairings,
will yield at most t! ¨ p2t´ 1q!!ś2t

k“1

a|Ak| tuples, of which many will be duplicates counted from
several ordered pairings.

We now prove that each tuple with symmetric difference p can be produced from at least t!
distinct ordered pairings, thus proving the existence of at most p2t´ 1q!!ś2t

k“1

a|Ak| distinct such
tuples. Consider a tuple x with ∆x “ p, and note that x can be produced from an ordered pairing
iff:

(1) Each pair tα,α1u P p appears in a paired set of coordinates txik , xjku.
(2) The remaining t´ |p|{2 pairs each contain two identical characters.

(3) Each pair mentioned in (1) precedes all other pairs containing α or α1.

First, we count the number of ways that positions containing a character from p can be partitioned
into pairs satisfying (1). Given any such pairing, and the assumption that ∆x “ p, at least one
way of pairing the remaining coordinates of x to satisfy (2) exists. Second, we find the number of
ways that a pairing satisfying (1) and (2) can be ordered to satisfy (3).

For α P p let #pαq be the number of occurrences of α in x. For each set of neighbours tα,α1u P p
the pair of coordinates mentioned in (1) can be chosen in #pαq ¨#pα1q ways. There is thus at leastś

tα,α1uPp#pαq ¨#pα1q valid pairings satisfying (1) and (2).
Disregarding (3), the t pairs can be ordered in t! ways. We will now compute the fraction of

these permutations satisfying (3). For each pair of neighbours tα,α1u P p let #pαα1q be the number
of pairs containing α or α1. Consider the following procedure for generating all permutations:
First, for each pair tα,α1u P p, choose #pαα1q priorities from t1, . . . , tu which will be distributed
amongst pairs of coordinates containing α and/or α1. Next, for each pair tα,α1u P p, the paired
coordinates containing tα,α1u is assigned one of the #pαα1q priorities reserved for α{α1. Afterwards
the remaining pα,αq- and pα1, α1q-pairs are assigned the remaining priorities. This procedure will
generate an ordering on the pairs satisfying (3) exactly when, in the second step, each mixed pair is
given the highest priority amongst the #pαα1q choices. Thus one in ś

tα,α1uPp#pαα1q permutations
satisfies (3).

Finally, observe that #pαα1q “ p#pαq `#pα1qq{2. Combining the two counting arguments it is
seen that x can be created from at least

t!
ź

tα,α1uPp

#pαq ¨#pα1q
#pαα1q ě t!

ordered pairings, showing that the lemma holds for c “ 1.
For c ą 1 we assume the lemma to be true for shorter keys, and proceed in a manner similar

to that for c “ 1. We will, at first, look at the final position of all involved keys (that is, the
position characters pc, αq for α P Σ), and will consider the set pc of characters from p appearing in
the final position, i.e. pc “ tα P Σ | pc, αq P pu, which we again consider to be partitioned into pairs
pc “ tpα,α1q, pβ, β1q, . . .u. Generally, we will use ac to refer to the character at the c’th position of
the key a and ã “ azac for the preceding c ´ 1 characters. We use the same notation for tuples
and sets of keys where the operation is applied to each key, Ac “ YaPAac and Ã “ YaPAã. For a

51

character β P Σ and set of keys A let Arβs “ ta P A | ac “ βu be the keys of A having β as their
last character.

We consider all ways of partitioning the 2t positions into an ordered set of pairs, this time
requiring that the characters in the final position of each key satisfy xcjk “ πxcăk

pxcikq where, for any
A Ď Σ,

πApαq “
#
α1 if α P pczA
α otherwise.

For a given sequence pα1, . . . , αtq P Σt of t character consider the number of 2t-tuples x P
A1 ˆ . . . ˆ A2t where pxcik , xcjkq “ pαik , πxcăk

pαikqq for all k P rts and ∆x “ p. If pα1, . . . , αtq gives
∆xc “ pc then counting these tuples is equivalent to counting in how many ways each pair px̃ik , x̃jkq
can be chosen from Ãik rαks ˆ Ãjkrπxcăk

pαkqs such that ∆x̃ “ p̃. By the induction hypothesis the
number of such 2t-tuples is bounded by

pp2t ´ 1q!!qc´1
tź

k“1

b
|Aik rαks| ¨

ˇ̌
Ajkrπxcăk

pαkqs
ˇ̌
.

Summing over all tuples pα1, . . . , αtq thus gives an upper bound on the number of 2t-tuples with
symmetric difference p while also adhering to the restrictions imposed by π on the characters in the
last position of each key, which in turn is determined by the ordered pairing of the 2t coordinates.
For ease of notation we use the shorthand πk for πxcăk

where xcăk is understood as the characters
α1, . . . , αk´1 along with their neighbours as determined by π. Thus πk is dependent on α1, . . . , αk´1,
even if this is not apparent from the notation.

To sum over all choices of α’s we repeatedly apply Cauchy-Schwarz on the innermost term of
the sum. For any k P rts and fixed α1, . . . , αk´1 we have

ÿ

αkPΣ

b
|Aikrαks| |Ajkrπkrαkss| ď

dÿ

βPΣ
|Aikrβs|

ÿ

βPΣ
|Ajkrπkpβqs| “

b
|Aik | |Ajk | .

To see that this is an application of Cauchy-Schwarz observe that

ÿ

αPΣ

b
|Aikrαs| |Ajkrπkpαqs|

is the inner product of the two vectors
`a|Aik rαs|

˘
αPΣ and

`a|Ajkrπkpαqs|
˘
αPΣ while

dÿ

αPΣ
|Aik rαs|

ÿ

αPΣ
|Ajkrπkpαqs|

is the product of their norms.
Applying the above inequality t times the total number of tuples for each ordered pairing

52

becomes

pp2t´ 1q!!qc´1
ÿ

pα1,...,αtqPΣt

tź

k“1

b
|Aikrαks| |Ajkrπkpαkqs|

ď
b
|Ait | |Ajt | ¨ pp2t´ 1q!!qc´1

ÿ

pα1,...,αt´1qPΣt´1

t´1ź

k“1

b
|Aikrαks| ¨

b
|Ajkrπkpαkqs|

ď
tź

l“t´1

b
|Ail | |Ajl | ¨ pp2t´ 1q!!qc´1

ÿ

pα1,...,αt´2qPΣt´2

t´2ź

k“1

b
|Aikrαks| ¨

b
|Ajkrπkpαkqs|

ď
tź

l“t´2

b
|Ail | |Ajl | ¨ pp2t´ 1q!!qc´1

ÿ

pα1,...,αt´3qPΣt´3

t´3ź

k“1

b
|Aikrαks| ¨

b
|Ajkrπkpαkqs|

...

ď pp2t´ 1q!!qc´1
tź

l“1

b
|Aik | |Ajk |

“ pp2t´ 1q!!qc´1
2tź

k“1

a|Ak| .

Summing over all t!p2t´1q!! ways of partitioning the coordinates into an ordered list of pairs we
thus find at most t!pp2t´1q!!qc ś2t

k“1

a|Ak| tuples. By the same counting argument as presented for
single-character keys each 2t-tuple xc P Σc with ∆xc “ pc and which complies with π is produced
from at least t! distinct ordered pairings of its coordinates. Thus each sequence of applications
of the induction hypothesis is repeated at least t! times. Hence at most pp2t ´ 1q!!qc ś2t

k“1

a|Ak|
distinct 2t-tuples x satisfy ∆x “ p, proving Lemma 40.

References

[AKK`20] Anders Aamand, Jakob Bæk Tejs Knudsen, Mathias Bæk Tejs Knudsen, Peter
Michael Reichstein Rasmussen, and Mikkel Thorup. Fast hashing with strong con-
centration bounds. In Proceedings of the 52nd Annual ACM SIGACT Symposium on
Theory of Computing, pages 1265–1278, 2020.

[BBK`23] Ioana O. Bercea, Lorenzo Beretta, Jonas Klausen, Jakob Bæk Tejs Houen, and Mikkel
Thorup. Locally uniform hashing. In 64th FOCS, pages 1440–1470, 2023.

[BCFM00] Andrei Z. Broder, Moses Charikar, Alan M. Frieze, and Michael Mitzenmacher. Min-
wise independent permutations. Journal of Computer and System Sciences, 60(3):630–
659, 2000. See also STOC’98.

[BJK`02] Ziv Bar-Yossef, T. S. Jayram, Ravi Kumar, D. Sivakumar, and Luca Trevisan. Count-
ing distinct elements in a data stream. In Proc. 6th International Workshop on Ran-
domization and Approximation Techniques (RANDOM), pages 1–10, 2002.

[Bro97] Andrei Z. Broder. On the resemblance and containment of documents. In Proc.
Compression and Complexity of Sequences (SEQUENCES), pages 21–29, 1997.

53

[CK07] Edith Cohen and Haim Kaplan. Summarizing data using bottom-k sketches. In Proc.
27th PODC, pages 225–234, 2007.

[Dav81] H.A. David. Order Statistics. Wiley, New York, 2 edition, 1981.

[DKRT15] Søren Dahlgaard, Mathias Bæk Tejs Knudsen, Eva Rotenberg, and Mikkel Thorup.
Hashing for statistics over k-partitions. In 2015 IEEE 56th Annual Symposium on
Foundations of Computer Science, pages 1292–1310. IEEE, 2015.

[DKT17] Søren Dahlgaard, Mathias Bæk Tejs Knudsen, and Mikkel Thorup. Fast similarity
sketching. In 58th FOCS, pages 663–671, 2017.

[DR98] Devdatt Dubhashi and Desh Ranjan. Balls and bins: A study in negative dependence.
Random Structures & Algorithms, 13(5):99–124, 1998.

[DT14] Søren Dahlgaard and Mikkel Thorup. Approximately minwise independence with
twisted tabulation. In Proc. 14th Scandinavian Workshop on Algorithm Theory
(SWAT), pages 134–145, 2014.

[FEFGM07] Philippe Flajolet, Éric Fusy, Olivier Gandouet, and Frédédric Meunier. Hyperloglog:
The analysis of a near-optimal cardinality estimation algorithm. In In Analysis of
Algorithms (AOFA), 2007.

[FM85] Philippe Flajolet and G. Nigel Martin. Probabilistic counting algorithms for data
base applications. Journal of Computer and System Sciences, 31(2):182–209, 1985.
Announced at FOCS’83.

[HH08] Abdolhossein Hoorfar and Mehdi Hassani. Inequalities on the lambert w function and
hyperpower function. J. Inequal. Pure and Appl. Math, 9(2):5–9, 2008.

[HT22] Jakob Bæk Tejs Houen and Mikkel Thorup. Understanding the moments of tabulation
hashing via chaoses. In Mikolaj Bojanczyk, Emanuela Merelli, and David P. Woodruff,
editors, 49th International Colloquium on Automata, Languages, and Programming,
ICALP 2022, July 4-8, 2022, Paris, France, volume 229 of LIPIcs, pages 74:1–74:19.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022.

[IM98] Piotr Indyk and Rajeev Motwani. Approximate nearest neighbors: Towards removing
the curse of dimensionality. In Proc. 30th ACM Symposium on Theory of Computing
(STOC), pages 604–613, 1998.

[JS68] Kumar Jogdeo and Stephen M Samuels. Monotone convergence of binomial proba-
bilities and a generalization of ramanujan’s equation. The Annals of Mathematical
Statistics, 39(4):1191–1195, 1968.

[Li15] Ping Li. 0-bit consistent weighted sampling. In Proceedings of the 21th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, pages 665–674,
08 2015.

[LOZ12] Ping Li, Art B. Owen, and Cun-Hui Zhang. One permutation hashing. In Proc.
26thAdvances in Neural Information Processing Systems, pages 3122–3130, 2012.

54

[LSMK11] Ping Li, Anshumali Shrivastava, Joshua L. Moore, and Arnd Christian König. Hash-
ing algorithms for large-scale learning. In Proc. 25thAdvances in Neural Information
Processing Systems, pages 2672–2680, 2011.

[PT12] Mihai Pǎtraşcu and Mikkel Thorup. The power of simple tabulation-based hashing.
Journal of the ACM, 59(3):Article 14, 2012. Announced at STOC’11.

[PT13] Mihai Pǎtraşcu and Mikkel Thorup. Twisted tabulation hashing. In Proc. 24th
ACM/SIAM Symposium on Discrete Algorithms (SODA), pages 209–228, 2013.

[Sie04] Alan Siegel. On universal classes of extremely random constant-time hash functions.
SIAM Journal on Computing, 33(3):505–543, 2004. See also FOCS’89.

[SSS95] Jeanette P. Schmidt, Alan Siegel, and Aravind Srinivasan. Chernoff-Hoeffding bounds
for applications with limited independence. SIAM Journal on Discrete Mathematics,
8(2):223–250, 1995. See also SODA’93.

[Tho13a] Mikkel Thorup. Bottom-k and priority sampling, set similarity and subset sums with
minimal independence. In Proc. 45th ACM Symposium on Theory of Computing
(STOC), 2013.

[Tho13b] Mikkel Thorup. Simple tabulation, fast expanders, double tabulation, and high inde-
pendence. In FOCS, pages 90–99, 2013.

[TZ12] Mikkel Thorup and Yin Zhang. Tabulation-based 5-independent hashing with applica-
tions to linear probing and second moment estimation. SIAM Journal on Computing,
41(2):293–331, 2012. Announced at SODA’04 and ALENEX’10.

[WC81] Mark N. Wegman and Larry Carter. New classes and applications of hash functions.
Journal of Computer and System Sciences, 22(3):265–279, 1981. See also FOCS’79.

[Zob70] Albert Lindsey Zobrist. A new hashing method with application for game playing.
Technical Report 88, Computer Sciences Department, University of Wisconsin, Madi-
son, Wisconsin, 1970.

55

A An Generalized Chernoff Bounds

The following is the standard Chernoff bound, here shown to apply to variables that are not
independent, but whose sum is dominated by that of independent indicator variables. This result
is known from [DR98] but we include a proof for completeness.

Lemma 41. Let X1, . . . ,Xn be 0/1-variables and p1, . . . , pn be reals such that µ “ ř
i pi and, for

all I Ď rns, PrrśiPI Xi “ 1s ďś
iPI pi (implying ErXis ď pi) then

Pr

«
nÿ

i“1

Xi ą p1` δqµ
ff
ď

ˆ
eδ

p1` δq1`δ

˙µ

for any δ ą 0.

Proof. Let a “ 1 ` δ, X “ řn
i“1Xi and s ą 0. Let Z1, . . . , Zn be independent 0/1-variables with

ErZis “ pi and define Z “ řn
i“1 Zi. For any I Ď rns we then have

E

«ź

iPI
Xi

ff
ď

ź

iPI
pi ď E

«ź

iPI
Zi

ff
.

Let i be a positive integer. For V P rnsi, which may contain duplicate entries, let I be the
distinct elements of V . We similarly have

E

«ź

vPV
Xv

ff
“ E

«ź

lPI
Xl

ff
ď E

«ź

lPI
Zv

ff
“ E

«ź

vPV
Zv

ff

hence

E
“
Xi

‰ “
ÿ

V Prnsi
E

«ź

vPV
Xv

ff
ď

ÿ

V Prnsi
E

«ź

vPV
Zv

ff
“ E

“
Zi

‰
.

PrrX ě a ¨ µs “ Pr
“
esX ě esa¨µ‰

ď ErexppsXqs
esa¨µ .

Note that

ErexppsXqs “
8ÿ

i“0

siE
“
Xi

‰

i!
ď

8ÿ

i“0

siE
“
Zi

‰

i!
“ ErexppsZqs .

Due to the independence of Z1, . . . , Zn we further have

ErexppsXqs ď
nź

i“1

ErexppsZiqs

“
nź

i“1

ppi ¨ es ` p1´ piqq

ď
nź

i“1

pexpppipes ´ 1qqq

ď exppµpes ´ 1qq

56

and thus

PrrX ě a ¨ µs ď exppµpes ´ 1qq
exppsaµq

“
ˆ

eδ

p1` δq1`δ

˙µ

when setting s “ lnpaq “ lnp1` δq.

57

Appendix C

Online Sorting and Online TSP

136

Online sorting and online TSP:
randomized, stochastic, and high-dimensional
Mikkel Abrahamsen # �

University of Copenhagen, Denmark

Ioana O. Bercea # �

KTH Royal Institute of Technology, Stockholm, Sweden

Lorenzo Beretta # �

University of California, Santa Cruz, USA

Jonas Klausen #�

University of Copenhagen, Denmark

László Kozma # �

Institut für Informatik, Freie Universität Berlin, Germany

Abstract
In the online sorting problem, n items are revealed one by one and have to be placed (immediately
and irrevocably) into empty cells of a size-n array. The goal is to minimize the sum of absolute
differences between items in consecutive cells. This natural problem was recently introduced by
Aamand, Abrahamsen, Beretta, and Kleist (SODA 2023) as a tool in their study of online geometric
packing problems. They showed that when the items are reals from the interval [0, 1] a competitive
ratio of O(

√
n) is achievable, and no deterministic algorithm can improve this ratio asymptotically.

In this paper, we extend and generalize the study of online sorting in three directions:
randomized: we settle the open question of Aamand et al. by showing that the O(

√
n) competitive

ratio for the online sorting of reals cannot be improved even with the use of randomness;
stochastic: we consider inputs consisting of n samples drawn uniformly at random from an
interval, and give an algorithm with an improved competitive ratio of Õ(n1/4). The result reveals
connections between online sorting and the design of efficient hash tables;
high-dimensional: we show that Õ(

√
n)-competitive online sorting is possible even for items from

Rd, for arbitrary fixed d, in an adversarial model. This can be viewed as an online variant of the
classical TSP problem where tasks (cities to visit) are revealed one by one and the salesperson
assigns each task (immediately and irrevocably) to its timeslot. Along the way, we also show a
tight O(log n)-competitiveness result for uniform metrics, i.e., where items are of different types
and the goal is to order them so as to minimize the number of switches between consecutive
items of different types.

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms

Keywords and phrases sorting, online algorithm, TSP

Funding Ioana O. Bercea, Lorenzo Beretta and Jonas Klausen: Supported by grant 16582, Basic
Algorithms Research Copenhagen (BARC), from the VILLUM Foundation.
Mikkel Abrahamsen: Supported by Starting Grant 1054-00032B from the Independent Research
Fund Denmark under the Sapere Aude research career programme and part of Basic Algorithms
Research Copenhagen (BARC), supported by the VILLUM Foundation grant 16582.
László Kozma: Supported by DFG grant KO 6140/1-2.

ar
X

iv
:2

40
6.

19
25

7v
1

 [
cs

.D
S]

 2
7

Ju
n

20
24

M. Abrahamsen, I. O. Bercea, L. Beretta, J. Klausen, L. Kozma 1

1 Introduction

The following natural problem called online sorting was recently introduced by Aamand,
Abrahamsen, Beretta, and Kleist [1]: Given a sequence x1, . . . , xn of real values, assign
them bijectively to array cells A[1], . . . , A[n]. Crucially, after receiving xj , for j = 1, 2, . . . , n,
we must immediately and irrevocably set A[i] = xj , for some previously unused array index
i ∈ [n]. The goal is to minimize

∑n−1
i=1 |A[i + 1] − A[i]|, the sum of absolute differences

between items in consecutive cells.
Aamand et al. [1] study the problem as modelling certain geometric online packing

problems. In particular, they use it to show lower bounds on the competitive ratio of such
problems1. It is easy to see that the optimal (offline) solution of online sorting is to place
the entries in sorted (increasing) order, and the question is how to approximate this solution
in an online setting where the items are revealed one by one.

The problem evokes familiar scenarios where we must commit step-by-step to an ordering
of items, such as when scheduling meetings in a calendar, writing recipes in a notebook,
planting trees in a garden, or writing data into memory cells. In such situations, some local
coherence or sortedness is often desirable, but once the location of an item has been assigned,
it is expensive to change it; for instance, it may be difficult to reschedule meetings or to
migrate data items once memory locations are referenced from elsewhere. One must then
carefully balance between placing similar items next to each other and leaving sufficiently
large gaps amid uncertainty about future arrivals2.

Moreover, online sorting can be firmly placed among familiar and well-studied online
problems; we briefly mention two. As they differ from online sorting in crucial aspects, a
direct transfer of techniques appears difficult.

list labeling or order maintenance [16, 11, 6, 26, 7]: in this problem, a sequence of values
are to be assigned labels consistent with their ordering (in effect placing the values into
an array). The main difference from online sorting is that the sequence must be fully
sorted and the goal is to minimize recourse, i.e., movement of previously placed items.
matching on the line [15, 24, 14, 4]: here, a sequence of clients (e.g., drawn from [n]) are
to be matched uniquely and irrevocably to servers (say, locations in [n]). The problem
differs from online sorting mainly in its cost function; the goal here is to minimize the
sum of distances between matched client-server pairs.

One of the main results of Aamand et al. [1] is an algorithm for online sorting with competitive
ratio O(

√
n). Aamand et al. require the input entries to come from the unit interval [0, 1]

and to contain the endpoints 0 and 1. Conveniently, this makes the offline cost equal to 1
and the competitive ratio equal to the online cost. We show that the same competitiveness
result can be obtained even if these assumptions are relaxed.

Aamand et al. [1] also show that the O(
√

n) bound cannot be improved by any determ-
inistic algorithm, and leave it as an open question whether it can be improved through
randomization (assuming that the adversary is oblivious, i.e., that it does not know the “coin

1 The competitive ratio of an online algorithm is the worst-case ratio of its cost to the optimum (offline)
cost over inputs of a certain size n. The competitive ratio of a problem is the best competitive ratio
achievable by an online algorithm for the problem.

2 The cost measure of online sorting is also natural as a measure of the unsortedness of a sequence. For
this, the number of inversions (i.e., the number of pairs a < b where b appears before a) is perhaps more
widely used. We argue, however, that with this latter cost, one cannot obtain a nontrivial competitive
ratio. Consider an adversary that outputs n/2 copies of 0.5, followed by either all 0s or all 1s until
the end. It is easy to see that one of these choices results in at least n2/8 inversions for any online
algorithm, whereas the optimal (sorted) sequence has zero inversions.

2 Online sorting and online TSP: randomized, stochastic, and high-dimensional

flips” of our algorithm). Note that in several online problems such as paging or k-server,
randomization can lead to asymptotic improvements in competitiveness (against an obli-
vious adversary); e.g., see [10]. As our first main result, we show that for online sorting,
randomization (essentially) does not help.

▶ Theorem 1. The (deterministic and randomized) competitive ratio of online sorting is
Θ(

√
n). The lower bound Ω(

√
n) holds even when the input numbers are from [0, 1].

Online TSP. Ordering real values with the above cost (sum of differences between consecutive
items) can be naturally viewed as a one-dimensional variant of the Traveling Salesperson
Problem (TSP). Suppose that n cities are revealed one by one (with repetitions allowed),
and a salesperson must decide, for each occurrence c of a city, on a timeslot for visiting c, i.e.,
the position of c in the eventual tour. The cost is then the length of the fully constructed
tour3. Formally, given a sequence (x1, . . . , xn) of items xi ∈ S, for a metric space S with
distance function d(·, ·), the goal is to assign the items bijectively to array cells A[1], . . . , A[n]
in an online fashion such as to minimize

∑n−1
i=1 d (A[i], A[i + 1]). We refer to this problem4

as online TSP in S.
Online TSP in R is exactly online sorting. A natural d-dimensional generalization is

online TSP in Rd, with the Euclidean distance d(·, ·) between items.5 A difficulty arising in
dimensions two and above is that the optimal cost is no longer constant; in Rd, the (offline)
optimum may reach Θ(n1− 1

d) even if the input points come from a unit box. Computing the
optimum exactly is NP-hard even if d = 2 [22]. Our second main result is an online algorithm
whose cost is O(n1− 1

d+1) and a competitiveness guarantee close to the one-dimensional case.

▶ Theorem 2. There is a deterministic algorithm for online TSP in Rd with competitive
ratio

√
d · 2d · O(

√
n log n).

As this setting includes online sorting as a special case, the lower bound of Ω(
√

n) applies.
A key step in obtaining Theorem 2 is the study of the uniform metric variant of the problem,
i.e., the case of distance function d with d(x, y) = 1 if and only if x ̸= y. This captures the
natural problem where items (or tasks) fall into a certain number of types, and we wish to
order them such as to minimize the number of switches, i.e., consecutive pairs of items of
different types. For this case we prove a tight (deterministic and randomized) competitive
ratio, independent of the number of different types, which may be of independent interest.
Our algorithm is a natural greedy strategy; we analyze it by modelling the evolution of
contiguous runs of empty cells as a coin-removal game between the algorithm and adversary.

▶ Theorem 3. The competitive ratio of online sorting of n items under the uniform metric
is Θ(log n). The upper bound O(log n) is achieved by a deterministic algorithm and the lower
bound Ω(log n) also holds for randomized algorithms.

Aamand et al. also consider the setting where the array is only partially filled (placing n

items into m > n cells). In this case, the cost is understood as the sum of distances d(x, y)

3 A small technicality is whether the salesperson must return to the starting point or not. The effect of
this in our cost regime, however, is negligible.

4 This model is sometimes referred to as the online-list model; it has been considered mostly in the
context of scheduling problems [23, 13]. To our knowledge, TSP has not been studied in this setting
before. Note however, that a different online model, called the online-time model has been used to study
TSP [3, 20, 9]. In that model new cities can be revealed while the salesperson is already executing the
tour; this may require changing the tour on the fly. Results in the two models are not comparable.

5 One may also view this task as a form of dimensionality reduction: we seek to embed a d-dimensional
data set in a one-dimensional space (the array), while preserving some distance information.

M. Abrahamsen, I. O. Bercea, L. Beretta, J. Klausen, L. Kozma 3

over pairs of items x, y with no other item placed between them. We thus extend our previous
result to arrays of a larger size, obtaining a tight characterization.

▶ Theorem 4. The competitive ratio (deterministic and randomized) of online sorting of n

items with an array of size ⌈γn⌉, with γ > 1, under the uniform metric is Θ(1 + log γ
γ−1).

Stochastic input. Given the (rather large) Ω(
√

n) lower bound on the competitive ratio
of online sorting, it is natural to ask whether we can overcome this barrier by relaxing the
worst-case assumption on the input. Such a viewpoint has become influential recently in
an attempt to obtain more refined and more realistic guarantees in online settings (e.g.,
see [25, 14]). A natural model is to view each item as drawn independently from some
distribution, e.g., uniformly at random from a fixed interval. Our next main result shows an
improved competitive ratio for such stochastic inputs:

▶ Theorem 5. There is an algorithm for online sorting of n items drawn independently
and uniformly at random from (0, 1] that achieves competitive ratio O((n log n)1/4) with
probability at least 1 − 2/n.

The algorithm illuminates a connection between online sorting and hash-based diction-
aries [19, § 6.4]. In the latter, the task is to place a sequence of n keys in an array of size
O(n), with the goal of minimizing search time. Fast searches are achieved by hashing keys to
locations in the array. Due to hash collisions, not all elements can be stored exactly at their
hashed location, and various paradigms have been employed to ensure that they are stored
“nearby” (for the search to be fast). We adapt two such paradigms to online sorting. The
first is to hash elements into buckets and solve the problem separately in each bucket. Each
bucket has a fixed capacity, and so an additional backyard is used to store keys that do not fit
in their hashed bucket [2, 8]. In Theorem 5, we use the values of the entries to assign them
to buckets and employ a similar backyard design. We note some critical technical differences:
in our design, all buckets must be full and we solve the problem recursively in each bucket;
we also operate in a much tighter balls-into-bins regime, as we are hashing n elements into
exactly n locations.

When the array size is allowed to be bigger than n, we employ yet another way for
resolving hash collisions: the linear probing approach of Knuth [18]. Here, the value ⌈αn⌉
serves as the hash location of an entry α ∈ (0, 1). Intuitively, this is a good approximation for
where the entry would appear in the sorted order. If we make sure that we place the entry
close enough to this intended location, we can hope for a small overall cost. That is, we use
the fact that linear probing places similar values close to each other. We get the following:

▶ Theorem 6. For any γ > 1, there is an algorithm for online sorting of n items drawn
independently and uniformly from (0, 1) into an array of size ⌈γn⌉ that achieves expected
competitive ratio O

(
1 + 1

γ−1

)
.

Paper structure. In § 2 we present our results for the standard (one-dimensional) online
sorting, in particular the lower bound for the randomized competitive ratio (Theorem 1).
Results for online TSP in Rd and results for the uniform metric (Theorems 2, 3, 4) are in § 3.
Our results for online sorting with stochastic input (Theorems 5, 6) are in § 4. We conclude
with a list of open questions in § 5. We defer some proofs and remarks to the Appendix.

2 Competitiveness for online sorting

Given a sequence X = (x1, . . . , xn) ∈ Rn and a bijection f : [n] → [n] assigning “array
cells” A[i] = xf(i), let Df (X) =

∑n−1
i=1 |A[i + 1] − A[i]|. Let OPT(X) denote the quantity

4 Online sorting and online TSP: randomized, stochastic, and high-dimensional

minf Df (X), i.e., the offline optimum.
An online algorithm is one that constructs the mapping f incrementally. Upon receiving

xj , for j = 1, . . . , n, the algorithm immediately and irrevocably assigns f(i) = j, for some
previously unassigned i ∈ [n]. For an online algorithm A, we denote by A(X) the cost Df (X)
for the function f constructed by algorithm A on input sequence X. We are interested in
the competitive ratio CA(n) of an algorithm A, i.e., the supremum of A(X)/OPT(X) over all
inputs X of a certain size n, and in the best possible competitive ratio C = C(n) = infA CA(n)
obtainable by any online algorithm A for a given problem.
Upper bound. Aamand et al. [1] show that C ∈ Θ(

√
n), under the additional restrictions

that xi ∈ [0, 1] for all i ∈ [n], and that {0, 1} ⊆ {x1, . . . , xn}. As our first result, we employ
a careful doubling strategy to show the same upper bound without the two restrictions, for
general sequences of n reals (the lower bound clearly continues to hold).

▷ Claim 7 (Proof in Appendix A). There is a deterministic online algorithm A for online
sorting of an arbitrary sequence of n reals, with CA ∈ O(

√
n).

Lower bound. The competitive ratio CA of a randomized algorithm A is the supremum
of E[A(X)]/OPT(X) over all inputs X, where the expectation is over the random choices
of A. Aamand et al. [1] leave open the question of whether a lower bound of Ω(

√
n) on

the competitive ratio also holds for randomized algorithms. We settle this question in the
affirmative. It is important to emphasize that the random choices of A are not known to the
adversary, i.e., we assume the oblivious model [10].

▷ Claim 8. CA ∈ Ω(
√

n) for every (possibly randomized) online algorithm A.

In the remainder of the section we prove Claim 8, which implies Theorem 1. As usual, to
lower bound the performance of a randomized algorithm (a distribution over deterministic
algorithms), we lower bound instead the performance of a deterministic algorithm on an
(adversarially chosen) distribution over input sequences.
Input distribution. Assume for simplicity that

√
n is an integer. Repeat the following until a

sequence of length n is obtained. With probability 1
2

√
n

set the remainder of the sequence to
0s. With probability 1

2
√

n
set the remainder of the sequence to 1s. With probability 1 − 1√

n

offer k√
n

for k = 0, . . . ,
√

n − 1 as the next
√

n elements of the sequence, and flip a new coin.
We refer to the

√
n elements produced by the third option as an epoch. Notice that OPT ≤ 1,

thus it is enough to lower bound the expected cost of the algorithm.
Notation. Let T be a partially filled array, |T | be the number of stored elements and G(T)
be the number of “gaps”, i.e., maximally contiguous groups of empty cells.

Let f(T) be the minimum cost of filling T by an online algorithm, when the input
sequence is chosen according to the distribution described above, where the cost of two
neighboring elements T [i], T [i + 1] are accounted for when T [i] or T [i + 1] is filled, whichever
happens the latest.

More formally, define the cost of a partially filled array T to be

c(T) =
n−1∑

i=0
T [i],T [i+1] are nonempty

|T [i] − T [i + 1]| ,

and let A(T) be the final array produced by an online algorithm A when the remaining n−|T |
elements of the input sequence are generated as described above. Then f(T) = c(A(T))−c(T)

M. Abrahamsen, I. O. Bercea, L. Beretta, J. Klausen, L. Kozma 5

is the difference between the final cost and the cost of the partially filled array T . Thus
f(T) = 0 if |T | = n, and E[f(∅)] is the value we wish to bound, using ∅ for the empty array.

For mappings T1, T2 where T2[i] = T1[i] for all indices where T1[i] is nonempty we say
that T2 can be obtained from T1. For such a pair of mappings let c(T1, T2) = c(T2) − c(T1)
be the cost of transforming T1 into T2 according to the way of accounting given above.

Let T (T) be the set of mappings that can be obtained by inserting an epoch into T .
That is, T (T) contains all mappings T ′ which can be obtained from T where the difference
between T ′ and T corresponds to the elements of an epoch. Note that |T ′| = |T | +

√
n for

T ′ ∈ T (T).
Let L = {T : G(T) ≤

√
n

8 } and H = {T : G(T) >
√

n
8 } be the sets of all partially filled

arrays with a low/high number of gaps.

▶ Lemma 9. Let T1, T2 ∈ L with T2 ∈ T (T1). Then c(T1, T2) ≥ 3
16 .

Proof. If an element is placed between two empty cells, the number of gaps will increase by
one. If it is placed next to one or two occupied cells, the number of gaps stays constant or is
reduced by one – call such an insertion an attachment. As G(T2) ≤ G(T1) +

√
n

8 at least 7
√

n
16

of the
√

n insertions of the epoch must be attachments.
An attachment incurs cost at least 1√

n
unless the value(s) in the neighboring cell(s)

and the newly inserted value are identical. As all values within an epoch are distinct, an
attachment can only be without cost if the neighboring cell was occupied in T1 (that is,
before the epoch). As G(T1) ≤

√
n

8 at most
√

n
4 occupied cells border an empty cell. The

remaining
√

n(7
16 − 1

4) = 3
√

n
16 attachments will incur non-zero cost. ◀

As a shorthand, let (T + 0) and (T + 1) be the mappings obtained by filling all gaps in T

with 0s/1s, respectively.

▶ Lemma 10. c(T, (T + 0)) + c(T, (T + 1)) ≥ G(T).

Proof. Each gap in T is bordered by at least one non-empty cell A[i]. We have |A[i] − 0| +
|A[i] − 1| = 1. ◀

For a mapping T the expected remaining cost can be bounded from below by

E[f(T)] ≥ 1
2
√

n
· c(T, (T + 0)) + 1

2
√

n
· c(T, (T + 1))

+
(

1 − 1√
n

)
· min

T ′∈T (T)
{c(T, T ′) + E[f(T ′)]}

and by Lemma 10 we thus have

E[f(T)] ≥ G(T)
2
√

n
+
(

1 − 1√
n

)
· min

T ′∈T (T)
{c(T, T ′) + E[f(T ′)]} . (1)

Let L(i) = min
T ∈L

|T |=n−i·√n

E[f(T)], and H(i) = min
T ∈H

|T |=n−i·√n

E[f(T)]

be the minimum expected cost of filling any array with i · √n empty cells, and which contains
a low/high number of gaps, for i ∈ {0, 1, . . . ,

√
n}, respectively i ∈ {0, 1, . . . ,

√
n − 1}. (Note

that H(
√

n) is undefined as an empty array cannot have a high number of gaps.)

6 Online sorting and online TSP: randomized, stochastic, and high-dimensional

Combining Equation (1) with Lemma 9 we obtain

L(i) ≥
(

1 − 1√
n

)
· min{3/16 + L(i − 1), H(i − 1)},

H(i) ≥ 1/16 +
(

1 − 1√
n

)
· min {L(i − 1), H(i − 1)} ,

with L(0) = H(0) = 0. Our next lemma, proved by induction (see Appendix A), leads to the
lower bound.

▶ Lemma 11. L(
√

n) ∈ Ω(
√

n).

As the empty mapping ∅ is contained in L we have E[f(∅)] ≥ L(
√

n) ∈ Ω(
√

n). Yao’s
minmax principle [21, Prop. 2.6] implies the lower bound on the expected cost of randomized
algorithms for a worst-case input.

3 Competitiveness for online TSP

We now consider the generalization of online sorting that we call online TSP. Given a
sequence X = (x1, . . . , xn) ∈ Sn for some metric space S, and a bijection f : [n] → [n], and
A[i] = xf(i), let Df (X) =

∑n−1
i=1 d(A[i + 1], A[i]). Here, d(·, ·) is a metric over S. As before,

OPT(X) = minf Df (X), i.e., the offline optimum, and A(X) is the cost Df (X) for a function
f constructed by an online algorithm A on input sequence X. We define CA and C as before.

Our main interest is in the case S = Rd, and particularly d = 2, with d(·, ·) the Euclidean
distance. As a tool in the study of the Euclidean case, we first look at a simpler, uniform
metric problem in § 3.1, showing a tight Θ(log n) bound on the competitive ratio. Then, in
§ 3.2 we study the Euclidean R2 and Rd cases. As the uniform metric case is natural in itself,
we revisit it in § 3.3 in the setting where the array size is larger than n.

3.1 Uniform metric
Let S be an arbitrary discrete set and consider the distance function d(x, y) = 0 if x = y

and d(x, y) = 1 otherwise. Let K = K(X) denote the number of distinct entries in the input
sequence X, i.e., K = |{x1, . . . , xn}|. We give instance-specific bounds on the cost in terms
of K and n. The following claim is obvious.

▷ Claim 12. OPT(X) = K − 1.

Next, we give a bound on the online cost and show that it is asymptotically optimal.

▷ Claim 13. There is an online algorithm A with cost A(X) ≤ K log2 n.

▷ Claim 14. For every (possibly randomized) algorithm A and all K ≥ 3, there is an input
distribution X with K = K(X) such that E[A(X)] ∈ Ω(K log n).

Note that the condition K ≥ 3 is essential; if K = 1, then A(X) = OPT(X) = 0
for every algorithm A, and if K = 2, then there is an online algorithm A that achieves
A(X) = OPT(X) = 1. (Place the two types of elements at the opposite ends of the array.)

Claims 12, 13, 14 together yield the main result of this subsection.

▶ Theorem 3. The competitive ratio of online sorting of n items under the uniform metric
is Θ(log n). The upper bound O(log n) is achieved by a deterministic algorithm and the lower
bound Ω(log n) also holds for randomized algorithms.

M. Abrahamsen, I. O. Bercea, L. Beretta, J. Klausen, L. Kozma 7

Proof of Claim 13. We describe algorithm A (see Appendix B for an alternative), noting
that it is not required to know K in advance. Assume without loss of generality that
{x1, . . . , xn} = {1, 2, . . . , K}. For each j, with 1 ≤ j ≤ K, maintain a cursor cj ∈ [n]
indicating the array cell where the next item xi is placed if it equals j. More precisely, if
xi = j, then let f(cj) = i, and move the cursor to the right: cj = min{cj + 1, n}.

If f(cj) is already assigned (i.e., the cell A[cj] is already written), set cj to the mid-point
of the largest empty contiguous interval. Similarly, when j is encountered the first time,
then initialize cj at the mid-point of the largest empty contiguous interval. Thus, initially,
cx1 = ⌊n/2⌋, i.e., place the first element at the middle of the array.

Clearly, A can always place xi somewhere, so A correctly terminates. It remains to prove
the upper bound on the number of unequal neighbors at the end of the process.

We model the execution of A as a coin-game. Consider a number of up to K piles of
coins. The game starts with a single pile of n coins. An adversary repeatedly performs one of
two possible operations: (1) remove one coin from an arbitrary pile, (2) split the largest pile
into two equal parts. Operation (2) is only allowed when the number of piles is less than K,
and only for a pile of at least two coins. The game ends when all coins have been removed.

It is easy to see that this game models the execution of A in the sense that for any
execution of A on X there is an execution of the coin-game in which the sizes of the
piles correspond at each step to the lengths of the contiguous empty intervals in the array.
Moreover, the number of consecutive unequal pairs at the end of algorithm A (i.e., the cost
A(X)) is at most the number of splits (i.e., operations (2)) of the coin-game execution. It is
thus sufficient to upper bound the number of splits in any execution of the coin game.

Let ni denote the size of a pile before its split, for the i-th split operation. As ni is
the size of the largest pile and piles can only get smaller, the sequence ni is non-increasing.
Suppose the i-th split replaces a pile of size t with two piles of size t/2. Then, after the split
there are at most K − 2 piles with sizes in [t/2, t] and no pile greater than t. Thus, after at
most K − 2 further splits, we split a pile of size at most t/2. (Possible operations (1) can
only strengthen this claim, as they make some piles smaller.) It follows that ni+K ≤ ni/2
for all i. As n1 ≤ n, and ni ≥ 1 for all i, the number of splits is at most K log2 n. ◀

Proof of Claim 14. Let A be an algorithm filling the items into an array A of size n. We
present a distribution over inputs X incurring cost E[X] ≥ Ω(K log n). By Yao’s minmax
principle [21, Prop. 2.6] we thus get that every randomized algorithm has a worst-case input
of cost Ω(K log n).

For each free cell A[i] we say that A[i] is friendly for the two (possibly identical) elements
yk and yl that are placed closest to the left and right of A[i] in A. When asked to place an
element y into A, A will increase the cost of the partial solution unless y is placed in a cell
that is friendly for y. When placing y in a cell that is friendly for y, the number of friendly
cells for y will decrease by one. The number of friendly cells for other elements may or may
not decrease, but no element will have more friendly cells than before the insertion of y.

Let z1 ≤ z2 ≤ · · · ≤ zK be the number of friendly cells for each of the K values, sorted
nondecreasingly. With n′ free cells in A,

∑K
i=1 zi ≤ 2n′, and hence z1 ≤ 2n′/K. Consider

the median z⌊K/2⌋. As
∑K

i=⌊K/2⌋ zi ≤ 2n′, we have z1 ≤ · · · ≤ z⌊K/2⌋ ≤ 2n′
1
2 K

= 4n′/K.
We now describe our input distribution, proceeding in epochs: At the start of each epoch

a value y is chosen uniformly at random from {1, . . . , K}, and this element is presented all
through the epoch. If K ∈ {3, 4}, the epoch will consist of 2n′/K copies of y, where n′ is
the number of unoccupied cells at the start of the epoch. By the first observation above,
Pr[zy ≤ 2n′/K] ≥ 1/K ≥ 1/4, in which case the input forces A to increase the cost of the
partial solution.

8 Online sorting and online TSP: randomized, stochastic, and high-dimensional

If K > 4, we instead let the epoch be of length 4n′/K, and by the second observation
above we obtain that Pr[zy ≤ 4n′/K] ≥ 1/2, again increasing the cost of the partial solution
with constant probability.

To establish a lower bound for the expected cost produced by this input, it remains to
lower bound the number of epochs processed. For small K, the epoch leaves n′ · K−2

K free
cells for the coming epochs. For K > 4 the epoch leaves n′ · K−4

K free cells. Thus, in both
cases, the number of epochs is at least

log K
K−4

(n) = log2(n)
log2

(
1 + 4

K−4

) ≥ K − 4
4 log2(n) .

Hence, the input will force A to produce a solution of expected cost Ω(K log n). ◀

3.2 Online TSP in Rd

We now proceed to the case where S = Rd and d(·, ·) is the Euclidean distance. We start
with the first new case, d = 2. For ease of presentation, we omit floors and ceilings in the
analysis. We assume that the input points are from the unit box [0, 1]2 and that the optimum
length is at least 1. These assumptions can be relaxed by a similar doubling-approach as in
the proof of Claim 7.

The following result is well known [5, 17, 12] (consider, e.g., a
√

n × √
n uniform grid).

▷ Claim 15. For all sequences X of n points in [0, 1]2, we have OPT(X) ∈ O(
√

n). Moreover,
there exists a sequence X of n poins in [0, 1]2 such that OPT(X) ∈ Ω(

√
n).

As a warm-up before our competitiveness result, we give an upper bound on the cost of
an online algorithm and we show the tightness of this bound. The arguments extend the
one-dimensional ones in a straightforward way. The proofs of the following can be found
in Appendix B.

▷ Claim 16. There is an online algorithm A such that A(X) ∈ O(n2/3) for all X ∈ [0, 1]2.

▷ Claim 17. For every deterministic A there is an input X such that A(X) ∈ Ω(n2/3).

Now we move to the study of the competitive ratio. Note that the lower bound of
Claim 8 immediately applies to our setting. Combined with Claim 16, it follows that
C ∈ O(n2/3) ∩ Ω(n1/2). In the following we (almost) close this gap, proving the following.

▷ Claim 18. The competitive ratio of online TSP in R2 is O(
√

n log n).

Partition the box [0, 1]2 into t × t boxes of sizes 1/t × 1/t, for t to be set later. Let K be
the number of boxes that are touched, i.e., that contain some input point xi. We first need
to lower bound the optimum.

▶ Lemma 19. OPT(X) ≥ K/4t.

Proof. If K/4t < 1, we are done, as OPT(X) ≥ 1 by assumption. Assume therefore K ≥ 4t.
Choose an arbitrary representative point of X from each touched box. Observe that
the optimum cannot be shorter than the optimal tour of the representatives (by triangle
inequality). Among any five consecutive vertices of the representatives-tour, two must be
from non-neighboring boxes, thus the total length of the four edges connecting these points
is at least 1/t. It follows that at least K/4 edges have this length, yielding the claim. ◀

M. Abrahamsen, I. O. Bercea, L. Beretta, J. Klausen, L. Kozma 9

Now we need an algorithm that does well in terms of K. For any two neighboring entries
in the array we consider only whether they come from the same box. This allows us to reduce
our problem to the uniform metric case (Claim 13).

▷ Claim 20. There is an online algorithm A such that A(X) ∈ O(K log n + n/t).

Proof. We treat points from the same box as having the same value. We run the algorithm
for the uniform metric given in Claim 13, incurring a total number of O(K log n) differing
pairs of neighbors. For these pairs we account for a maximum possible cost of

√
2. All other

neighboring pairs have the same value (= come from the same box), incurring a cost of at
most O(1/t) each, for a total of O(n/t). This completes the proof. ◀

Together with Lemma 19, this yields Claim 18. Indeed, set t =
√

n
log n . If K ≤ t, then

using OPT ≥ 1, we have A/OPT ≤ K log n+n/t
1 ∈ O(

√
n log n). If K > t, then using Lemma 19,

A/OPT ≤ K log n+n/t
K/4t = 4t log n + 4n/K ∈ O(

√
n log n).

Online TSP in Rd. We now extend the bound on the competitive ratio (Claim 18) to the
higher dimensional case, also considering the dependence on d, leading to the claimed result.

▶ Theorem 2. There is a deterministic algorithm for online TSP in Rd with competitive
ratio

√
d · 2d · O(

√
n log n).

Analogously to Claim 15, we first state an absolute bound on the optimal TSP cost in d

dimensions, treating d as a constant [5, 17, 12].

▷ Claim 21. For all sets X of n points in [0, 1]d, we have OPT(X) ∈ O(n1−1/d). Moreover,
there exists a set X of n poins in [0, 1]d such that OPT(X) ∈ Ω(n1−1/d).

A straightforward generalization of Claims 16 and 17 yields (for all constant d):

▷ Claim 22. There is an online algorithm A for online TSP in Rd such that A(X) ∈
O(n1− 1

d+1) for all X. For every deterministic algorithm A there is an input X such that
A(X) ∈ Ω(n1− 1

d+1).

Proof of Theorem 2. We follow the proof of Claim 18, with minor changes. We assume the
input to come from the d-dimensional unit box [0, 1]d. We partition this box into td boxes of
sizes (1/t)d. When adapting Lemma 19, we have to consider 2d (instead of 4) consecutive tour
edges, thus obtaining OPT(X) ≥ K

2dt
. When adapting Claim 20, our upper bound increases

by a factor of
√

d, the distance between antipodal vertices of a unit d-cube, replacing the
implicit

√
2 in the earlier bound. Thus, when bounding the competitive ratio, we incur an

overall factor of
√

d · 2d, yielding the result. ◀

3.3 Uniform metric with a larger array
We study the problem of placing n elements {1, . . . , K} into an array of size ⌈γn⌉ for a fixed
γ > 1. The algorithm and distribution from Claims 13 and 14 can be reused in this setting,
stopping either process after the insertion of the first n elements.

▷ Claim 23. For every algorithm A and any number K ≥ 3 of input values, there is an
input distribution X such that E[A(X)] ∈ Ω(K · (1 + log(γ/(γ − 1)))).

▷ Claim 24. There is an online algorithm A with cost A(X) ∈ O(K · (1 + log(γ/(γ − 1)))).

The two claims together imply Theorem 4. We defer their proofs to Appendix B.1.
They rely on similar arguments as the proofs of the claims mentioned above, with a refined
argument for counting the number of epochs/moves performed.

10 Online sorting and online TSP: randomized, stochastic, and high-dimensional

4 Competitiveness for stochastic online sorting

In this section, we prove Theorem 5 and Theorem 6 (§ 4.1).

▶ Theorem 5. There is an algorithm for online sorting of n items drawn independently
and uniformly at random from (0, 1] that achieves competitive ratio O((n log n)1/4) with
probability at least 1 − 2/n.

We start by describing the general design of the algorithm from Theorem 5 and show-
ing some fundamental properties. We then describe a recursive algorithm and give the
parameterizations that achieve the desired competitive cost.
The general design. We let α and β denote two parameters in (0, 1) which we will set later.
We decompose the array A of n cells as such: the first N = n − nβ cells are divided into
M = nα consecutive sub-arrays A1, . . . , Anα , and the remaining nβ cells (at the end of the
array) form one single subarray denoted by B. We refer to each of the sub-arrays Ai as a
bucket and to B as the backyard. We note that each bucket Ai can hold C = N/M elements,
which we refer to as the capacity of the bucket.

We use the values of the elements to hash them into the array. Namely, for an element
x ∈ (0, 1), we define h : (0, 1] → {1, . . . , M} by setting h(x) = ⌈x · M⌉. In other words, the
elements in the interval (0, 1/M] will all hash to bucket 1, elements in the interval (1/M, 2/M]
will hash to bucket 2, etc. Since the elements are chosen independently and uniformly at
random from (0, 1], we get that h assigns the elements independently and uniformly at
random into the M buckets.6

SortUnif1(A, n): the first algorithm. Let SortDet(A, n) denote the deterministic algorithm
from [1]. We now define the algorithm SortUnif1(A, n) as such: upon receiving x, it checks if
the bucket Ah(x) has any empty cells. If so, it forwards x to SortDet(Ah(x), C). Otherwise, it
forwards x to SortDet(B, nβ) (and we say that the corresponding bucket is full).

We first prove that SortUnif1(A, n) successfully places all items with high probability.
Note that this is not always guaranteed: it could happen that both the bucket and the
backyard are full (before we have managed to place all the n elements). If this happens, then
among all n elements, strictly less than C hash into some bucket. We call this event a failure
and show the following by employing a Chernoff bound (Appendix C):

▷ Claim 25. Given any c > 0, if β ≥ 1
2 ·
(

1 + α + ln ln n+ln(2(c+1))
ln n

)
, then SortUnif1(A, n)

fails with probability at most 1/nc.

We now bound the cost of SortUnif1(A, n):

▷ Claim 26. If SortUnif(A, n) does not fail, then its cost is at most O(
√

C + nβ/2).

Proof. Since each bucket receives at least C elements, the cost of placing elements inside
bucket A1 is given by the cost of SortDet(A1, C) on elements from (0, 1/M). We bound this
by O(

√
C · 1/M]. For the remaining buckets, the elements are drawn from (i/M, (i + 1)/M)].

This is equivalent to sorting elements from (0, 1/M], and so their cost is the same as that
of A1. Therefore, in total, the cost from each individual bucket is O(

√
C). In addition, we

also have the cost from crossing from one bucket to the next. This is at most 2/M , since
the maximum difference between elements from consecutive buckets is at most 2/M . Since
there are M buckets, this amounts to a cost of at most 2. The cost of crossing from bucket

6 We assume that there is no element of value 0. The probability of this happening is 0.

M. Abrahamsen, I. O. Bercea, L. Beretta, J. Klausen, L. Kozma 11

AM to the backyard is 1. Finally, the cost in the backyard is O(nβ/2), since it employs
SortDet(B, nβ) on elements from (0, 1). ◀

We instantiate α and β such that we get the following (proof in Appendix C):

▶ Lemma 27. Given any c > 0, SortUnif1(A, n) has cost at most O(n1/3 ·ln1/6 n·(2(c+1))1/6)
with probability at least 1 − 1/nc.

SortUnifk: recursing on the buckets. We take advantage of the fact that within each bucket,
the elements are chosen uniformly at random. That is, we can apply the same strategy
recursively inside the bucket. We get a series of algorithms SortUnifk for k ≥ 2. In SortUnifk,
we let α and β be defined as in SortUnif1. When we see an element x with h(x) = i, if its
bucket Ai is not full, we place (xM − i + 1) using SortUnifk−1(Ah(x), C). Note that we have
already conditioned on the fact that ⌈x · M⌉ = i. In this case, (xM −i+1) becomes uniformly
distributed in (0, 1). If Ai is full, we place x in the backyard according to SortDet(B, nβ).

Note that there are now several causes for failure: either some bucket Ai is not full, or
one of the algorithms inside the bucket fails. We bound the probability of either of these
happening as follows, proving the claim by induction over k (Appendix C):

▶ Lemma 28. Given any c > 0, SortUnifk(A, n) has cost at most

O
(

n1/fk · ln1/4 n · (2(c + 1))Bk

)

with probability at least 1 − 2/nc, where fk = 4 − 1/2k−1 and Bk = k/4.

Setting c = 1 and k = log2

(
2/(4 + ln n −

√
ln2 n + 8 ln n)

)
yields the bounds claimed in

Theorem 5; the details are given in Appendix C.

4.1 Stochastic online sorting in larger arrays
▶ Theorem 6. For any γ > 1, there is an algorithm for online sorting of n items drawn
independently and uniformly from (0, 1) into an array of size ⌈γn⌉ that achieves expected
competitive ratio O

(
1 + 1

γ−1

)
.

The algorithm. Define α = (γ −1)/10 and β = γ −α such that array A has size (β +α)n. We
will refer to the final αn cells of A as the buffer. The first βn cells we consider to correspond
to the interval [0, 1). More specifically, cell A[i] represents the interval

[
i

βn , i+1
βn

)
.

Let h : [0, 1) → {0, βn − 1} be the function which maps values x ∈ [0, 1) to the index of
the corresponding cell: h(x) =

⌊
x

βn

⌋
. Our algorithm A inserts each value x into A[h(x)]

if the cell is available, and otherwise into the first available cell following h(x), possibly
wrapping around from A[γn − 1] to A[0] (although, as we argue in Appendix C.1, this is
unlikely). In other words, x is inserted into the cell A[h(x) + i mod γn] where i is the
smallest non-negative integer such that the specified cell is available.
Counting steps. As the values are drawn independently and uniformly from [0, 1), the indices
h(x) are also independently and uniformly distributed in {0, . . . , βn − 1}. The algorithm
thus mirrors the scheme of linear probing commonly used for implementing hash tables.
In linear probing each key x that is to be added to the table (and which is generally not
assumed to come from a known distribution) is hashed to an index of the array, and x is
inserted into the first following free cell.

12 Online sorting and online TSP: randomized, stochastic, and high-dimensional

When implementing a hash table, one is interested in analyzing the speed of insertions,
which for linear probing corresponds to the number of cells that are probed before a free
cell is found. Although speed is not a concern for our online algorithm, we will nonetheless
show that the number of steps performed is an important measure for bounding the cost of
our solution. Formally, let s(k) be the number of steps performed when inserting the k-th
value xk of the input. If A[h(xk)] is free, then s(k) = 1; otherwise s(k) = i + 1, when xk is
inserted into cell A[h(xk) + i mod γn].

Now consider the linear probing process ALP inserting n elements into a table T of size
βn (that is, without the buffer space). Analogously to s(i) we let sLP (i) be the number
of steps performed by ALP when inserting the i-th element. We couple the processes A
and ALP so that they encounter the same stream of indices h(x1), h(x2), . . . , h(xn) during
execution. We then have s(i) ≤ sLP (i). Indeed, the only difference between the processes is
that A has an extra αn cells of buffer space to prevent wraparound at the end of A. More
generally, we thus have E[s(i)] ≤ E[sLP (i)]. Combining the pieces we get that:

▷ Claim 29. E[A(X)] ≤ O
(

1 + 1
βn

∑n
i=1 E[s(i)]

)
.

The proof can be found in Appendix C.1. We then invoke the following classic result by
Knuth [18] to bound

∑
i E[sLP (i)]:

▶ Theorem 30 ([18]). Consider the process of inserting (1 − ε)m elements into an array of
size m by linear probing. When hash values are assigned uniformly and independently,

(1−ε)m∑

i=1
E[sLP (i)] ∈ O

(
(1 − ε)m · 1

ε

)
.

To apply Theorem 30, set m = βn and ε = (β − 1)/β such that (1 − ε)m = n, and
thus

∑n
i=1 E[s(i)] ≤ ∑n

i=1 E[sLP (i)] ∈ O
(

n ·
(

β
β−1

))
. As β − 1 = 9

10 · (γ − 1), we have

E[A(X)] ∈ O
(

1 + 1
β · β

β−1

)
⊆ O

(
1 + 1

γ−1

)
, proving Theorem 6. ◀

5 Conclusion and open questions

In this paper, we studied the online sorting problem in some of its variants. Several questions
and directions to further study remain, we mention those that we find most interesting.
Online sorting of reals. For large arrays (m = ⌈γn⌉, for γ > 1) significant gaps remain
between the upper and lower bounds on the competitive ratio of online sorting (see [1]).

In a different direction, consider online sorting and online list labeling, mentioned in § 1.
These can be seen as two extremes of an “error vs. recourse” trade-off: online sorting allows
no recourse, while list labeling allows no error. Achieving a smooth trade-off between the
two optimization problems by some hybrid approach is an intriguing possibility.
Stochastic and other models. In the stochastic setting of online sorting, we could improve
upon the worst-case bound, but the obtained ratio (Theorem 5) is likely not optimal; we
are not aware of nontrivial lower bounds. For stochastic online sorting with large arrays
(Theorem 6), a matching lower bound is likewise missing. We restricted our study to uniform
distribution over an interval; extending the results to other distributions remains open.

Other models that go beyond the worst-case assumption could yield further insight; we
mention two possible models: (1) online sorting with advice (e.g., from a machine learning
model): suppose that each input item comes with a possibly unreliable estimate of its rank

M. Abrahamsen, I. O. Bercea, L. Beretta, J. Klausen, L. Kozma 13

in the optimal (sorted) sequence; what is the best way to make use of this advice? (2) online
sorting with partially sorted input: for instance, suppose that the input cost

∑n−1
i=1 |xi+1 − xi|

is small. What is the best guarantee for the online sorting cost in this case?
Online TSP in various metrics. For online TSP in Rd, for fixed d, a small gap remains
between the lower bound Ω(

√
n) and upper bound O(

√
n log n) on the competitive ratio

(Theorem 2). The dependence on d (when d ∈ ω(1)) is not known to be optimal. Online
TSP in Rd with large array, and/or with stochastic input are also interesting directions.

Some non-Euclidean metrics pose natural questions, e.g., L0 or L∞ in Rd, or tree- or
doubling metrics. More broadly, is the optimal competitive ratio O(

√
n) for arbitrary metrics?

References
1 Anders Aamand, Mikkel Abrahamsen, Lorenzo Beretta, and Linda Kleist. Online sorting

and translational packing of convex polygons. In Nikhil Bansal and Viswanath Nagarajan,
editors, Proceedings of the 2023 ACM-SIAM Symposium on Discrete Algorithms, SODA
2023, Florence, Italy, January 22-25, 2023, pages 1806–1833. SIAM, 2023. URL: https:
//doi.org/10.1137/1.9781611977554.ch69, doi:10.1137/1.9781611977554.CH69.

2 Yuriy Arbitman, Moni Naor, and Gil Segev. Backyard cuckoo hashing: Constant worst-
case operations with a succinct representation. In 2010 IEEE 51st Annual symposium on
foundations of computer science, pages 787–796. IEEE, 2010.

3 Giorgio Ausiello, Esteban Feuerstein, Stefano Leonardi, Leen Stougie, and Maurizio Talamo.
Algorithms for the on-line travelling salesman 1. Algorithmica, 29:560–581, 2001.

4 Eric Balkanski, Yuri Faenza, and Noémie Périvier. The power of greedy for online minimum
cost matching on the line. In Proceedings of the 24th ACM Conference on Economics and
Computation, pages 185–205, 2023.

5 Jillian Beardwood, J. H. Halton, and J. M. Hammersley. The shortest path through many
points. Mathematical Proceedings of the Cambridge Philosophical Society, 55(4):299–327, 1959.
doi:10.1017/S0305004100034095.

6 Michael A Bender, Richard Cole, Erik D Demaine, Martin Farach-Colton, and Jack Zito. Two
simplified algorithms for maintaining order in a list. In European Symposium on Algorithms,
pages 152–164. Springer, 2002.

7 Michael A Bender, Alex Conway, Martín Farach-Colton, Hanna Komlós, William Kuszmaul,
and Nicole Wein. Online list labeling: Breaking the log 2 n barrier. In 2022 IEEE 63rd Annual
Symposium on Foundations of Computer Science (FOCS), pages 980–990. IEEE, 2022.

8 Michael A. Bender, Martin Farach-Colton, John Kuszmaul, William Kuszmaul, and Mingmou
Liu. On the optimal time/space tradeoff for hash tables. In Stefano Leonardi and Anupam
Gupta, editors, STOC ’22: 54th Annual ACM SIGACT Symposium on Theory of Computing,
Rome, Italy, June 20 - 24, 2022, pages 1284–1297. ACM, 2022. doi:10.1145/3519935.
3519969.

9 Antje Bjelde, Jan Hackfeld, Yann Disser, Christoph Hansknecht, Maarten Lipmann, Julie
Meißner, Miriam Schlöter, Kevin Schewior, and Leen Stougie. Tight bounds for online tsp on
the line. ACM Transactions on Algorithms (TALG), 17(1):1–58, 2020.

10 Allan Borodin and Ran El-Yaniv. Online computation and competitive analysis. Cambridge
University Press, 1998.

11 Paul F Dietz. Maintaining order in a linked list. In Proceedings of the fourteenth annual ACM
symposium on Theory of computing, pages 122–127, 1982.

12 L. Few. The shortest path and the shortest road through n points. Mathematika, 2(2):141–144,
1955. doi:10.1112/S0025579300000784.

13 Amos Fiat and Gerhard J. Woeginger. On-line scheduling on a single machine: Minimizing
the total completion time. Acta Informatica, 36(4):287–293, 1999. URL: https://doi.org/
10.1007/s002360050162, doi:10.1007/S002360050162.

14 Online sorting and online TSP: randomized, stochastic, and high-dimensional

14 Anupam Gupta, Guru Guruganesh, Binghui Peng, and David Wajc. Stochastic online metric
matching. In 46th International Colloquium on Automata, Languages, and Programming
(ICALP 2019). Schloss-Dagstuhl-Leibniz Zentrum für Informatik, 2019.

15 Anupam Gupta and Kevin Lewi. The online metric matching problem for doubling metrics.
In Automata, Languages, and Programming: 39th International Colloquium, ICALP 2012,
Warwick, UK, July 9-13, 2012, Proceedings, Part I 39, pages 424–435. Springer, 2012.

16 Alon Itai, Alan G Konheim, and Michael Rodeh. A sparse table implementation of priority
queues. In International Colloquium on Automata, Languages, and Programming, pages
417–431. Springer, 1981.

17 Howard J. Karloff. How long can a euclidean traveling salesman tour be? SIAM J. Discret.
Math., 2(1):91–99, 1989. doi:10.1137/0402010.

18 Donald E. Knuth. Notes on open addressing. Unpublished memorandum. See http://
citeseer.ist.psu.edu/knuth63notes.html, 1963.

19 Donald E. Knuth. The Art of Computer Programming, Volume 3: (2nd Ed.) Sorting and
Searching. Addison Wesley Longman Publishing Co., Inc., Redwood City, CA, USA, 1998.

20 Nicole Megow, Martin Skutella, José Verschae, and Andreas Wiese. The power of recourse
for online mst and tsp. In Automata, Languages, and Programming: 39th International
Colloquium, ICALP 2012, Warwick, UK, July 9-13, 2012, Proceedings, Part I 39, pages
689–700. Springer, 2012.

21 Rajeev Motwani and Prabhakar Raghavan. Randomized algorithms. In Mikhail J. Atallah,
editor, Algorithms and Theory of Computation Handbook, Chapman & Hall/CRC Applied
Algorithms and Data Structures series. CRC Press, 1999. URL: https://doi.org/10.1201/
9781420049503-c16, doi:10.1201/9781420049503-C16.

22 Christos H Papadimitriou. The euclidean travelling salesman problem is np-complete. Theor-
etical computer science, 4(3):237–244, 1977.

23 Kirk Pruhs, Jirí Sgall, and Eric Torng. Online scheduling. In Joseph Y.-T. Leung, editor, Hand-
book of Scheduling - Algorithms, Models, and Performance Analysis. Chapman and Hall/CRC,
2004. URL: http://www.crcnetbase.com/doi/abs/10.1201/9780203489802.ch15, doi:10.
1201/9780203489802.CH15.

24 Sharath Raghvendra. Optimal analysis of an online algorithm for the bipartite matching
problem on a line. In 34th International Symposium on Computational Geometry (SoCG
2018). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2018.

25 Tim Roughgarden, editor. Beyond the Worst-Case Analysis of Algorithms. Cambridge
University Press, 2020. doi:10.1017/9781108637435.

26 Michael Saks. Online labeling: Algorithms, lower bounds and open questions. In International
Computer Science Symposium in Russia, pages 23–28. Springer, 2018.

M. Abrahamsen, I. O. Bercea, L. Beretta, J. Klausen, L. Kozma 15

A Proofs from § 2

▷ Claim 7 (Proof in Appendix A). There is a deterministic online algorithm A for online
sorting of an arbitrary sequence of n reals, with CA ∈ O(

√
n).

Proof. Our task is to place n values x1, . . . , xn ∈ R bijectively into the array cells A[1], . . . ,
A[n]. We revisit and extend the algorithm from [1]. The main obstacle is that in [1] it can
be assumed that OPT = 1. In our case, OPT = maxi {xi} − mini {xi}; as this quantity is not
known until the end, we estimate it based on the available data.

For ease of presentation assume that x1 = 0. This is without loss of generality as we can
simply transform xi to xi − x1 for all i = 1, . . . , n and the costs of both offline and online
solutions are unaffected.

Start by reading x1, x2 and placing them arbitrarily (this incurs a cost of at most 2OPT),
and set q = ⌈log2 |x2 − x1|⌉ = ⌈log2 |x2|⌉ (as we assumed x1 = 0). Throughout the algorithm
we maintain q so that the input values seen so far are in the interval J = [−2q, 2q]. This
clearly holds after reading x2 . For simplicity, assume first that x3, . . . , xn ∈ J , and q does
not need to be updated.

Let N1 = ⌊√
n⌋ and N2 = 2N1. Partition the interval J into N1 equal-size subinter-

vals J1, . . . , JN1 , called “boxes”, and partition the array A into N2 equal-size subarrays
A1, . . . , AN2 , called “blocks” (as n is generally not divisible by N2, we allow one block to be
smaller).

Whenever a value xi ∈ Jk is received, if it is the first value from box Jk, then we assign
Jk to a yet unassigned (empty) block At; we place xi in the leftmost cell of At and continue
placing future values from Jk into At (left-to-right). If the block At of Jk is full, we assign a
new empty block to Jk.

If we run out of empty blocks, we must have processed at least n/2 values; to see this,
observe that of the N2 = 2N1 blocks, at most N1 − 1 are non-full, the rest have been filled.
From this point on, we treat the remaining n′ ≤ n/2 empty cells of A as a virtual (contiguous)
array A′, recursively placing the remaining n′ values into A′ by the same strategy (we restart
A on A′, without the intitialization of q, i.e., we keep the current values of q and J).

The total cost t(n) of A is at most

t(n) ≤ t(n′) + 2q+1 · n

N1
+ 2q∗+1 · 2N2.

The first term is the remaining cost of placing n′ values into a contiguous array of size n′.
The second term is the cost due to at most n values already placed within full blocks.

(As these come from one of the N1 boxes of J and |J | ≤ 2q+1, the bound follows.)
The third term is the cost due to boundaries between blocks, and “at the interface” with the

recursive call, i.e., at the margins of incomplete blocks. (This term thus captures the cost of
“pretending” A′ to be contiguous.) Here 2q∗+1 is an upper bound on the size of J throughout
the entire execution of A (including future points), i.e., q∗ = ⌈log2 (maxi (xi) − mini (xi))⌉ =
⌈log2 OPT⌉, and q ≤ q∗.

We have t(n) ≤ t(n/2) + OPT · O(
√

n), which resolves to t(n) ∈ OPT · O(
√

n). Notice that
OPT is the global optimum of the problem, not the optimum in the current recursive call.

Suppose now that we receive a point xi /∈ J . We update

q = ⌈log2 (max
k≤i

(xk) − min
k≤i

(xk))⌉

and J = [−2q, 2q]. Note that the value of q increased, and all values x1, . . . , xi seen so far
are also contained in the current J . We then split J into new boxes J ′

1, . . . , J ′
N1

(without

16 Online sorting and online TSP: randomized, stochastic, and high-dimensional

changing N1 or N2). The blocks A1, . . . , AN2 remain, and if some old box Ji was assigned to
a block Aj , then we assign the corresponding new box J ′

i to Aj . With these changes, we
continue with the algorithm.

Observe that at the margin of every non-filled block we may end up with neighbors not
from the same box (i.e., one is from the old, one is from the new). Thus, their distance may
be up to |J | = 2q+1, so we incur an additional cost of at most 2q+1 · N1 ≤ 2q+1 · √

n.
We may incur such an extra cost several times during the execution, but always for

a different integer q ≤ q⋆. As 2q⋆−1 ≤ OPT ≤ 2q⋆+1, the total extra cost is at most∑
q≤q⋆ 2q+1 · √

n ∈ OPT · O(
√

n), and the overall bound is unaffected. ◀

▶ Lemma 11. L(
√

n) ∈ Ω(
√

n).

Proof. Proceed by induction on i. For all i′ ∈ {0, . . . , i − 1} assume

H(i′) ≥
(

1 − 1√
n

)i′

· i′

32 ,

L(i′) ≥
(

1 − 1√
n

)i′

· i′ − 1
32 .

Then

H(i) ≥ 1
16 +

(
1 − 1√

n

)
· min{L(i − 1), H(i − 1)}

≥ 1
16 +

(
1 − 1√

n

)
· min

{(
1 − 1√

n

)i−1
· i − 2

32 ,

(
1 − 1√

n

)i−1
· i − 1

32

}

≥
(

1 − 1√
n

)i

· i

32 ,

and

L(i) ≥
(

1 − 1√
n

)
· min

{
3
16 + L(i − 1), H(i − 1)

}

≥
(

1 − 1√
n

)
· min

{
3
16 +

(
1 − 1√

n

)i−1
· i − 2

32 ,

(
1 − 1√

n

)i−1
· i − 1

32

}

= min
{(

1 − 1√
n

)
· 3

16 +
(

1 − 1√
n

)i

· i − 2
32 ,

(
1 − 1√

n

)i

· i − 1
32

}

≥
(

1 − 1√
n

)i

· i − 1
32 .

Finally, note that (1 − 1√
n

)
√

n ≥ 0.3 for n ≥ 10, proving the claim. ◀

B Proofs from § 3

An alternative algorithm for Claim 13. We now present a different algorithm, resembling
the one from [1] and the one from the proof of Claim 7. If K is known, then we can proceed
in a straightforward way: Partition the array into 2K blocks, assign individual values to
blocks, and when we run out of free blocks, recurse on the remaining free space. We get a
cost of t(n) = O(K) + t(n/2), yielding t(n) ∈ O(K log n). Here the O(K) term accounts for
both the boundaries between blocks and the interface with the recursive call.

M. Abrahamsen, I. O. Bercea, L. Beretta, J. Klausen, L. Kozma 17

We can handle the case of unknown K by a doubling strategy, similar to the proof of
Claim 7. Namely, start with K = 2, and run the above algorithm. When a new element
arrives that increases the number of different values seen to K + 1, then set K to 2K, and
split each block in the current recursive level into two equal parts. A full block will be
replaced by two full blocks, an empty block will be replaced by two empty blocks. In both
cases, there is no additional cost.

A partially filled block will be replaced either by (1) a full block and an empty block, or
(2) a full block and a partially filled block, or (3) a partially filled block and an empty block.
In either case, if the block was assigned to a value t, then, if there is a resulting partially
filled block, then it will continue to be filled with values t. Thus there is no incurred cost
that is not accounted for already elsewhere, and the bound of O(K log n) holds.

▷ Claim 16. There is an online algorithm A such that A(X) ∈ O(n2/3) for all X ∈ [0, 1]2.

Proof. The algorithm closely follows the online sorting algorithm of [1] and the extension in
Claim 7.

Divide the box [0, 1]2 into n1/3 × n1/3 boxes of sizes n−1/3 × n−1/3. Divide the array of
size n into 2n2/3 equal size blocks. When a point arrives in a given box B, assign B to a
previously unassigned block J , and place points from B into J (in arrival order, left-to-right).
If J is full, assign a new block to B. If no more new blocks are available, re-use the empty
space by treating it as if it were contiguous, and recursively assign blocks for the remaining
(at most) n/2 input points.

The total cost can be bounded as t(n) ≤ O(n2/3) + t(n/2) ∈ O(n2/3), where we accounted
for the at most O(n−1/3) distance between any two neighbors, and the at most O(1) distance
between the O(n2/3) block-boundaries and boundaries at the interface between the first call
and the recursive call. ◀

▷ Claim 17. For every deterministic A there is an input X such that A(X) ∈ Ω(n2/3).

Proof. We adapt the lower bound strategy for online sorting from [1], with the n2/3 allowed
input points being the grid points of the n1/3 ×n1/3 uniform grid spanning [0, 1]2. We present
the adversary strategy against deterministic algorithms; a randomized oblivious adversary
can be obtained using techniques similar to those in § 2.

In the first phase, as long as there is a grid point that does not appear in the array with
an empty neighbor, output that point as the next input item. If all grid points appear with
an empty neighbor, then move to phase two, and output (0, 0) points until the end. In the
first phase each input item incurs cost at least Ω(n−1/3), thus, if we remain in the first phase
until the end, then the total cost is Ω(n · n−1/3) = Ω(n2/3). If we move to the second phase,
then the cost is at least ∑

1≤i,j≤n1/3

√
i · n−1/3 + j · n−1/3,

likewise yielding Ω(n2/3). ◀

B.1 Proofs from § 3.3
▷ Claim 23. For every algorithm A and any number K ≥ 3 of input values, there is an
input distribution X such that E[A(X)] ∈ Ω(K · (1 + log(γ/(γ − 1)))).

Proof. We start by introducing one copy of each element {1, . . . , K}, immediately causing a
cost of K − 1. Then, we proceed as in the proof of Claim 14, choosing a type uniformly at
random. Assume K ≥ 5. With m′ free cells left in the array we repeat the chosen element

18 Online sorting and online TSP: randomized, stochastic, and high-dimensional

4m′/K times. By the arguments presented in the proof of Claim 14, this increases the cost
of the partial solution with probability at least 1/2. Next, a new element is chosen, and the
process is repeated with m′(1 − 4/K) free cells left in the array.

The question now is how many times we can repeat this procedure before having inserted
n elements. Watching the process in reverse, it is seen that with m′ cells currently free, we
have caused an increase in cost (with probability 1/2) during the previous Km′/(K − 4)
insertions. The process is stopped when m′ = (γ − 1)n, and started at m′ = γn − K. Hence
we can repeat the process

log K
K−4

(
γn − K

(γ − 1)n

)
=

log2

(
γ

(γ−1) − K
(γ−1)n

)

log2

(
K

K−4

)

≥ K − 4
4 · log2

(
γ

(γ − 1) − K

(γ − 1)n

)

≥ Ω
(

K · log
(

γ

γ − 1

))

times. Thus the expected cost of A(X) will be K − 1 + 1/2 · Ω(K · log(γ/(γ − 1))).
The case K ∈ {3, 4} is lifted from the proof of Claim 14 in the same way: Letting each

round be of length m′/K, rounds will cause an increase in cost with probability at least
1/K ≥ 1/4, and we can execute Ω(K · log(γ/(γ − 1))) rounds. ◀

▷ Claim 24. There is an online algorithm A with cost A(X) ∈ O(K · (1 + log(γ/(γ − 1)))).

Proof. We reuse the algorithm and coin-game from the proof of Claim 13, with the modi-
fication that the game starts with γn coins in a single pile and ends when (γ − 1)n coins
are left. Generalizing the observation from the proof of Claim 13, we observe that if we at
some point have c piles each of size at most t, then all piles will be of size at most t/2 after
another c splits.

Applying this observation to the very start of the game, we initially have a single pile of
γn coins, then two piles of at most γn/2 coins each after the first split, then four piles of at
most γn/4 coins after another two splits, and so forth. Generally, ni ≤ γn/2⌊log2 i+1⌋.

From the above observation, n2K ≤ γn/K, and from the proof of Claim 13 we have
ni+K ≤ ni/2. The early termination of the game means that ni ≥ (γ − 1)n/K for all i, thus

i ≤ 2K + K log2

(
γn

K
· K

(γ − 1)n

)
= K ·

(
2 + log2

(
γ

γ − 1

))
. ◀

C Proofs from § 4

▷ Claim 25. Given any c > 0, if β ≥ 1
2 ·
(

1 + α + ln ln n+ln(2(c+1))
ln n

)
, then SortUnif1(A, n)

fails with probability at most 1/nc.

Proof. Let |Ai| denote the number of elements that hash (according to h) into a fixed bucket
Ai, for some i ∈ {1, . . . , M}. Then E[|Ai|] = n1−α, since we have n elements hashing into
M = nα buckets. Recall that the capacity of each bucket is C = N/M , where N = n − nβ ,
and so C = n1−α − nβ−α. We now apply a Chernoff bound for the lower tail of |Ai|:

Pr[|Ai| < C] = Pr
[
|Ai| <

(
1 − 1/n1−β

)
· n1−α

]
≤ exp

(
−1/2 · n1−α · 1/n2−2β

)

= exp
(
−1/2 · n2β−α−1) .

M. Abrahamsen, I. O. Bercea, L. Beretta, J. Klausen, L. Kozma 19

The claim follows by setting α and β such that the above probability is at most 1/nc+α and
then doing a union bound over all buckets. ◀

▶ Lemma 27. Given any c > 0, SortUnif1(A, n) has cost at most O(n1/3 ·ln1/6 n·(2(c+1))1/6)
with probability at least 1 − 1/nc.

Proof. We first optimize for the cost of SortUnif1(A, n) from Claim 26. Note that the cost
is (asymptotically) minimized when nβ = Θ(C), that is, when nβ = Θ(n1−α). We thus set
β = 1 − α. We now verify the conditions from Claim 25 and set

α = 1
3 − ln ln n + ln(2(c + 1))

3 ln n
.

Then n
1−α

2 = n
1
3 · n

ln ln n+ln(2(c+1))
6 ln n = n

1
3 · exp

(
ln ln n+ln(2(c+1))

6

)
and the claim follows. ◀

▶ Lemma 28. Given any c > 0, SortUnifk(A, n) has cost at most

O
(

n1/fk · ln1/4 n · (2(c + 1))Bk

)

with probability at least 1 − 2/nc, where fk = 4 − 1/2k−1 and Bk = k/4.

Proof. We prove the claim by induction on k. We assume that the statement is true for k

and we then prove it for k + 1. From the proof of Claim 25, we have that the buckets in
SortUnifk+1 are not full with probability at most 1/nc as long as

β ≥ 1
2 ·
(

1 + α + ln ln n + ln(2(c + 1))
ln n

)
. (2)

We now would like to have the same upper bound for the probability that SortUnifk fails
in some bucket. For that, we invoke the inductive hypothesis with failure probability at
most 1/nc+1, and do a union bound over the nα buckets. We implicitly assume here that
α < 1, so that we have 2nα ≤ n. We upper bound C by n1−α and get that the cost for all
the buckets is

O
(

n(1−α)/fk · exp (1/4 · ln ln n + Bk · ln(2(c + 2)))
)

.

The cost across the buckets and the backyard remains O(1), and the cost of the backyard
is O(nβ/2) as before. We now equate

1 − α

fk
+ 1/4 · ln ln n + Bk ln(2(c + 2))

ln n
= β

2
and then set

α = 4 − fk

4 + fk
+ fk

fk + 4 · 4Bk · ln(2c + 4) − ln(2c + 2)
ln n

to satisfy Eq.(2). We would then get that

1 − α

fk
= 2

4 + fk
− 1

4 + fk
· 4Bk · ln(2c + 4) − ln(2c + 2)

ln n

and the exponent in the overall cost would be

2
4 + fk

+
1/4 · ln ln n + Bk · ln(2c + 4) − 4Bk

4+fk
· ln(2c + 4) + 1

4+fk
ln(2c + 2)

ln n
.

20 Online sorting and online TSP: randomized, stochastic, and high-dimensional

Note that 2/(4 + fk) = 1/fk+1 by definition, so the only thing left to verify is that:

Bk · ln(2c + 4) − 4Bk

4 + fk
· ln(2c + 4) + 1

4 + fk
ln(2c + 2) ≤ Bk+1 · ln(2c + 2) .

We upper bound ln(2c + 4) ≤ 2 ln(2c + 2) and get that it is enough to show that

2Bk ·
(

1 − 4
4 + fk

)
+ 1

4 + fk
≤ Bk+1 .

Finally, we use the fact that 1/8 ≤ 1/(4 + fk) ≤ 1/4 to show that this inequality holds
when we set Bk = k/4. ◀

▶ Theorem 5. There is an algorithm for online sorting of n items drawn independently
and uniformly at random from (0, 1] that achieves competitive ratio O((n log n)1/4) with
probability at least 1 − 2/n.

Proof. To get an overall bound, we invoke Lemma 28 for c = 1 and a value k that leads to a
small cost. We set x = 1/2k−1 and rewrite k = log2(2/x) in the main term in the cost as
follows:

n1/fk · 4k/4 = n1/(4−x) ·
√

2/x = exp(ln n/(4 − x) + 1/2 · ln(2/x)) = exp(ln(2)/2 + f(x)) ,

where we defined f(x) = ln n/(4 − x) − 1/2 · ln(x). This function is minimized at x0 =
4 + ln n −

√
ln2 n + 8 ln n, so we invoke SortUnifk0(A, n) for k0 = log2(2/x0), yielding:

f(x0) = ln n√
ln2 n + 8 ln n − ln n

− 1
2 · ln(4 + ln n −

√
ln2 n + 8 ln n) ≤ ln n

4 + 1
2 .

Plugging f(x0) and k0 back, we get an overall cost of O((n ln n)1/4). As the optimal (offline)
cost is clearly Ω(1) with high probability, the claim follows. ◀

C.1 Proofs from § 4.1
In this subsection we prove the following claim characterizing the cost of the algorithm
presented in § 4.1.

▷ Claim 29. E[A(X)] ≤ O
(

1 + 1
βn

∑n
i=1 E[s(i)]

)
.

A central concept for our analysis is that of the run. A run denotes a maximal contiguous
subarray of filled cells A[i] through A[j] such that an element x ∈

[
i

βn , j+2
βn

)
will be placed

in cell A[j + 1]. Generally, long runs are to be avoided as they make it more likely that an
element x is placed far away from A[h(x)], which makes it more difficult to bound the cost
incurred by neighboring elements.
The issue of wraparound. When analyzing linear probing one can often disregard the issue
of wraparound as a technical corner case which has no impact on the procedure at hand other
than to complicate notation and definitions. For our use case however, wraparound would
mean that we place a large value at the start of the array – a region that we, intuitively,
have otherwise been filling with small values.

Wraparound could thus incur quite a penalty, and we will prove that, w.h.p., no wrap-
around will happen. In this way, wraparounds can be disregarded in the following arguments.
Formally, let W denote the event that A experiences wraparound during execution, so that
some element x is placed in a cell of index smaller than h(x). We then compute the expected
cost of A(X) as E[A(X)] = E[A(X) · [W]] + E[A(X) · [¬W]].

M. Abrahamsen, I. O. Bercea, L. Beretta, J. Klausen, L. Kozma 21

▷ Claim 31.

E[A(X) · [W]] ≤ O

(
1
n

)
.

Proof. First, note that the cost of any solution will be at most n. Hence the claim follows
when we have shown that Pr[W] ≤ O

(1
n2

)
.

As each run starts in one of the first βn cells, some run needs to be of length at least αn

to cover the buffer at the end of A, which is a necessary condition for wraparound. For such
a long run to occur, there must in turn exist an interval I ⊂ [0, βn] of length αn such that
there are at least αn values x ∈ X with h(x) ∈ I. Denote the number of such elements by
XI .

As XI is the sum of independent trials, each with success probability α/β, we can
bound the probability of XI exceeding αn by a Chernoff bound. Setting δ = β − 1 and
µ = E[XI] = n · α/β we have, for any fixed α, β,

Pr[XI > αn] = Pr[XI > (1 + δ)µ] ≤ exp
(−δ2µ

2 + δ

)
= exp

(
−(β − 1)2 α

β n

1 + β

)
≤ O

(
1
n4

)
.

By a union bound over all βn intervals we get Pr[W] ≤ O(β/n3) ≤ O(1/n2). ◀

Bounding the cost of the solution. We account for three types of cost in A(X): If the i-th
element is inserted in a cell right before the start of a run, the i-th step is said to incur a
merge cost, denoted mer(i), as it potentially merges two runs. If the i-th element is inserted
in the cell following a run, the i-th step is said to incur an extend cost, denoted ext(i), as it
extends the run. If the i-th insertion does not give rise to a merge- (resp. extend-) cost, we
set mer(i) = 0 (resp. ext(i) = 0). Finally we have to account for the cost between values
A[i] and A[j] separated by one or more empty cells. This cost is not charged to a specific
insertion performed by the algorithm but is instead viewed as a property of the solution,
sep(A(X)).

We bound the expected size of each type of cost in the following three claims, and together
they account for the value of the solution produced by A.

▷ Claim 32.
n∑

i=1
E[mer(i) · [¬W]] ≤ 1

βn

n∑

i=1
E[s(i)] + 1

β
.

Proof. Let xi be the i-th element of X and let k be the index where xi is placed. Then
s(i) = 1 + k − h(xi), due to our assumption that no wraparound occurs. Let y = A[k + 1] be
the value in the neighbouring cell, which was inserted before xi. Then mer(i) = |y − xi|.

As cell A[k] was empty at the time of y’s insertion we must have y ∈
[

k+1
βn , k+2

βn

)
.

Meanwhile, xi ∈
[

h(xi)
βn , h(xi)+1

βn

)
and thus

|y − xi| ≤ k + 2 − h(xi)
βn

= s(i) + 1
βn

.

It follows that
∑n

i=1 E[mer(i) · [¬W]] ≤ 1
βn

∑n
i=1 E[s(i)] + 1

β . ◀

▷ Claim 33.
n∑

i=1
E[ext(i) · [¬W]] ≤ 1

βn

n∑

i=1
E[s(i)] .

22 Online sorting and online TSP: randomized, stochastic, and high-dimensional

Proof. Denote by Ik the k-th run in A which spans cells A[ak] through A[bk] before the
insertion of xi, with value yk = A[bk] in the final position. Assuming no wraparound occurs,
we have ak ≤ bk. In a slight abuse of notation we denote by h(xi) ∈ Ik the event that xi is
appended to Ik, which is equivalent to the event h(xi) ∈ [ak, bk + 1]. Assuming h(xi) ∈ Ik,
we then have s(i) = 1 + (bk + 1) − h(xi) = 2 + bk − h(xi). Then

ext(i) =
∑

k=1
|xi − yk| · [h(xi) ∈ Ik] ≤

∑

k=1

1
βn

(|h(xi) − h(yk)| + 1) · [h(xi) ∈ Ik] .

As we are interested in E[ext(i)] we wish to bound E[|h(xi) − h(yk)| · [h(xi) ∈ Ik]] for some
fixed k. We will not delve into the distribution of h(yk) but note that the distribution of h(xi)
is independent of h(yk). Conditioning on h(yk), we see that the expectation is maximized
when h(yk) is at one of the “extremes” h(yk) = ak or h(yk) = bk. For ease of computation
we substitute h(yk) = bk + 1 for our upper bound:

E[|h(xi) − h(yk)| · [h(xi) ∈ Ik] · [¬W]] ≤ E[|(bk + 1) − h(xi)| · [h(xi) ∈ Ik]]
= E[(s(i) − 1) · [h(xi) ∈ Ik]] .

Plugging into our previous equation we obtain

E[ext(i) · [¬W]] ≤ 1
βn

∑

k=1
E[s(i) · [h(xi) ∈ Ik]] ≤ 1

βn
· E[s(i)] .

◀

▷ Claim 34.

E[sep(A(X)) · [¬W]] ≤ 2 .

Proof. Let the runs be numbered 1, . . . , r according to their order in A, and say that the
i-th run covers cells A[ai] through A[bi] such that ai ≤ bi < ai+1 ≤ bi+1. With this notation
sep(A(X)) =

∑r
i=1 |A[ai+1] − A[bi]|.

Fix some i, let x = A[ai+1] and y = A[bi]. First, observe that h(x) = ai+1. Had h(x)
been lower, x would have been placed in a cell of smaller index (and we know that A[ai+1 −1]
is empty). Had h(x) been higher, x would have been placed in a cell of index at least ai+1

due to our assumption that no wraparound occurs. Hence A[ai+1] ∈
[

ai+1
βn , ai+1+1

βn

)
.

Similarly, we have ai ≤ h(y) ≤ bi and thus A[bi] ∈
[

ai

βn , bi+1
βn

)
, as the element y would

otherwise have been placed outside of the run. Thus
r∑

i=1
|A[ai+1] − A[bi]| ≤

r∑

i=1

ai+1 − ai + 1
βn

= ar − a1 + r

βn
≤ 2

as r ≤ ar ≤ βn. ◀

Summing over Claims 31–34, we obtain the bound stated in Claim 29. ◀

Appendix D

A Faster Algorithm for
Constrained Correlation
Clustering

160

A Faster Algorithm for Constrained Correlation
Clustering
Nick Fischer #

INSAIT, Sofia University “St. Kliment Ohridski”, Bulgaria

Evangelos Kipouridis #

Max Planck Institute for Informatics, Saarland Informatics Campus, Saarbrücken, Germany

Jonas Klausen #

BARC, University of Copenhagen, Denmark

Mikkel Thorup #

BARC, University of Copenhagen, Denmark

Abstract
In the Correlation Clustering problem we are given n nodes, and a preference for each pair of nodes
indicating whether we prefer the two endpoints to be in the same cluster or not. The output is a
clustering inducing the minimum number of violated preferences. In certain cases, however, the
preference between some pairs may be too important to be violated. The constrained version of
this problem specifies pairs of nodes that must be in the same cluster as well as pairs that must not
be in the same cluster (hard constraints). The output clustering has to satisfy all hard constraints
while minimizing the number of violated preferences.

Constrained Correlation Clustering is APX-Hard and has been approximated within a factor 3 by
van Zuylen et al. [SODA ’07]. Their algorithm is based on rounding an LP with Θ(n3) constraints,
resulting in an Ω(n3ω) running time. In this work, using a more combinatorial approach, we show
how to approximate this problem significantly faster at the cost of a slightly weaker approximation
factor. In particular, our algorithm runs in Õ(n3) time (notice that the input size is Θ(n2)) and
approximates Constrained Correlation Clustering within a factor 16.

To achieve our result we need properties guaranteed by a particular influential algorithm for
(unconstrained) Correlation Clustering, the CC-PIVOT algorithm. This algorithm chooses a pivot
node u, creates a cluster containing u and all its preferred nodes, and recursively solves the rest of
the problem. It is known that selecting pivots at random gives a 3-approximation. As a byproduct
of our work, we provide a derandomization of the CC-PIVOT algorithm that still achieves the
3-approximation; furthermore, we show that there exist instances where no ordering of the pivots
can give a (3 − ε)-approximation, for any constant ε.

Finally, we introduce a node-weighted version of Correlation Clustering, which can be approx-
imated within factor 3 using our insights on Constrained Correlation Clustering. As the general
weighted version of Correlation Clustering would require a major breakthrough to approximate
within a factor o(log n), Node-Weighted Correlation Clustering may be a practical alternative.

2012 ACM Subject Classification Theory of computation → Facility location and clustering

Keywords and phrases Clustering, Constrained Correlation Clustering, Approximation

Funding Jonas Klausen and Mikkel Thorup are part of BARC, Basic Algorithms Research Copen-
hagen, supported by VILLUM Foundation grants 16582 and 54451. This work is part of the project
TIPEA that has received funding from the European Research Council (ERC) under the European
Unions Horizon 2020 research and innovation programme (grant agreement No. 850979).
Nick Fischer : Partially funded by the Ministry of Education and Science of Bulgaria’s support for
INSAIT, Sofia University “St. Kliment Ohridski” as part of the Bulgarian National Roadmap for
Research Infrastructure. Parts of this work were done while the author was at Saarland University.

Acknowledgements We thank Lorenzo Beretta for his valuable suggestions on weighted sampling.

ar
X

iv
:2

50
1.

03
15

4v
1

 [
cs

.D
S]

 6
 J

an
 2

02
5

N. Fischer, E. Kipouridis, J. Klausen, and M. Thorup 1

1 Introduction

Clustering is a fundamental task related to unsupervised learning, with many applications
in machine learning and data mining. The goal of clustering is to partition a set of nodes
into disjoint clusters, such that (ideally) all nodes within a cluster are similar, and nodes in
different clusters are dissimilar. As no single definition best captures this abstract goal, a lot
of different clustering objectives have been suggested.

Correlation Clustering is one of the most well studied such formulations for a multitude
of reasons: Its definition is simple and natural, it does not need the number of clusters to
be part of the input, and it has found success in many applications. Some few examples
include automated labeling [1, 16], clustering ensembles [11], community detection [20, 39],
disambiguation tasks [32], duplicate detection [6] and image segmentation [33, 43].

In Correlation Clustering we are given a graph G = (V, E), and the output is a partition
(clustering) C = {C1, . . . , Ck} of the vertex set V . We refer to the sets Ci of C as clusters.
The goal is to minimize the number of edges between different clusters plus the number of
non-edges inside of clusters. More formally, the goal is to minimize |E△EC |, the cardinality
of the symmetric difference between E and EC , where we define EC =

⋃k
i=1

(
Ci

2
)
. In other

words, the goal is to transform the input graph into a collection of cliques with the minimal
number of edge insertions and deletions. An alternative description used by some authors is
that we are given a complete graph where the edges are labeled either “+” (corresponding to
the edges in our graph G) or “−” (corresponding to the non-edges in our graph G).

The problem is typically motivated as follows: Suppose that the input graph models the
relationships between different entities which shall be grouped. An edge describes that we
prefer its two endpoints to be clustered together, whereas a non-edge describes that we prefer
them to be separated. In this formulation the cost of a correlation clustering is the number
of violated preferences.

1.1 Previous Results

Correlation Clustering was initially introduced by Bansal, Blum, and Chawla [8], who
proved that it is NP-Hard, and provided a deterministic constant-factor approximation, the
constant being larger than 15,000. Subsequent improvements were based on rounding the
natural LP: Charikar, Guruswami and Wirt gave a deterministic 4-approximation [18], Ailon,
Charikar and Newman gave a randomized 2.5-approximation and proved that the problem is
APX-Hard [3], while a deterministic 2.06-approximation was given by Chawla, Makarychev,
Schramm and Yaroslavtsev [19]. The last result is near-optimal among algorithms rounding
the natural LP, as its integrality gap is at least 2. In a breakthrough result by Cohen-Addad,
Lee and Newman [25] a (1.994 + ϵ)-approximation using the Sherali-Adams relaxation broke
the 2 barrier. It was later improved to 1.73 + ϵ [24] by Cohen-Addad, Lee, Li and Newman,
and even to 1.437 by Cao et al. [14]. There is also a combinatorial 1.847-approximation
(Cohen-Addad et al. [26]).

Given the importance of Correlation Clustering, research does not only focus on improving
its approximation factor. Another important goal is efficient running times without big
sacrifices on the approximation factor. As the natural LP has Θ(n3) constraints, using a
state-of-the-art LP solver requires time Ω(n3ω) = Ω(n7.113). In order to achieve efficient
running times, an algorithm thus has to avoid solving the LP using an all-purpose LP-solver,
or the even more expensive Sherali-Adams relaxation; such algorithms are usually called

2 A Faster Algorithm for Constrained Correlation Clustering

combinatorial algorithms1. Examples of such a direction can be seen in [3] where, along with
their LP-based 2.5-approximation, the authors also design a combinatorial 3-approximation
(the CC-PIVOT algorithm); despite its worse approximation, it enjoys the benefit of
being faster. Similarly, much later than the 2.06-approximation [19], Veldt devised a faster
combinatorial 6-approximation and a 4-approximation solving a less expensive LP [38].

Another important direction is the design of deterministic algorithms. For example, [3]
posed as an open question the derandomization of CC-PIVOT. The question was (partially)
answered affirmatively by [37]. Deterministic algorithms were also explicitly pursued in [38],
and are a significant part of the technical contribution of [19].

Correlation Clustering has also been studied in different settings such as parameterized
algorithms [29], sublinear and streaming algorithms [7, 13, 9, 10, 13, 17], massively parallel
computation (MPC) algorithms [23, 15], and differentially private algorithms [12].

PIVOT. The CC-PIVOT algorithm [3] is a very influential algorithm for Correlation
Clustering. It provides a 3-approximation and is arguably the simplest constant factor
approximation algorithm for Correlation Clustering. It simply selects a node uniformly
at random, and creates a cluster C with this node and its neighbors in the (remaining)
input graph. It then removes C’s nodes and recurses on the remaining graph. Due to
its simplicity, CC-PIVOT has inspired several other algorithms, such as algorithms for
Correlation Clustering in the streaming model [7, 13, 9, 10, 13, 17] and algorithms for the
more general Fitting Utrametrics problem [2, 22].

One can define a meta-algorithm based on the above, where we do not necessarily pick
the pivots uniformly at random. Throughout this paper, we use the term PIVOT algorithm
to refer to an instantiation of the (Meta-)Algorithm 12. Obviously CC-PIVOT is an
instantiation of PIVOT, where the pivots are selected uniformly at random.

Algorithm 1 The PIVOT meta-algorithm. CC-PIVOT is an instantiation of PIVOT
where pivots are selected uniformly at random.

procedure Pivot(G = (V, E))
1 C ← ∅
2 while V ̸= ∅ do
3 Pick a pivot node u

/* an instantiation of Pivot() only needs to specify how the
pivot is selected in each iteration */

4 Add a cluster containing u and all its neighbors to C

5 Remove u, its neighbors and all their incident edges from G

6 return C

The paper that introduced CC-PIVOT [3] posed as an open question the derandomization
of the algorithm. The question was partially answered in the affirmative by [37]. Unfortunately

1 On a more informal note, combinatorial algorithms are often not only faster, but also provide deeper
insights on a problem, compared to LP-based ones.

2 This is not to be confused with the more general pivoting paradigm for Correlation Clustering algorithms.
In that design paradigm, the cluster we create for each pivot is not necessarily the full set of remaining
nodes with which the pivot prefers to be clustered, but can be decided in any other way (e.g. randomly,
based on a probability distribution related to an LP or more general hierarchies such as the Sherali-Adams
hierarchy).

N. Fischer, E. Kipouridis, J. Klausen, and M. Thorup 3

there are two drawbacks with this algorithm. First, it requires solving the natural LP, which
makes its running time equal to the pre-existing (better) 2.5-approximation. Second, this
algorithm does not only derandomize the order in which pivots are selected, but also decides
the cluster of each pivot based on an auxiliary graph (dictated by the LP) rather than based
on the original graph. Therefore it is not an instantiation of PIVOT.

Weighted Correlation Clustering. In the weighted version of Correlation Clustering, we
are also given a weight for each preference. The final cost is then the sum of weights of
the violated preferences. An O(log n)-approximation for weighted Correlation Clustering is
known by Demaine, Emanuel, Fiat and Immorlica [27]. In the same paper they show that
the problem is equivalent to the Multicut problem, meaning that an o(log n)-approximation
would require a major breakthrough. As efficiently approximating the general weighted
version seems out of reach, research has focused on special cases for which constant-factor
approximations are possible [34, 35].

Constrained Correlation Clustering. Constrained Correlation Clustering is an interesting
variant of Correlation Clustering capturing the idea of critical pairs of nodes. To address
these situations, Constrained Correlation Clustering introduces hard constraints in addition
to the pairwise preferences. A clustering is valid if it satisfies all hard constraints, and the
goal is to find a valid clustering of minimal cost. We can phrase Constrained Correlation
Clustering as a weighted instance of Correlation Clustering: Simply give infinite weight to
pairs associated with a hard constraint and weight 1 to all other pairs.

To the best of our knowledge, the only known solution to Constrained Correlation
Clustering is given in the work of van Zuylen and Williamson who designed a deterministic
3-approximation [37]. The running time of this algorithm is O(n3ω), where ω < 2.3719 is the
matrix-multiplication exponent. Using the current best bound for ω, this is Ω(n7.113).

1.2 Our Contribution
Our main result is the following theorem. It improves the Ω(n7.113) running time of the
state-of-the-art algorithm for Constrained Correlation Clustering while still providing a
constant (but larger than 3) approximation factor3.

▶ Theorem 1 (Constrained Correlation Clustering). There is a deterministic algorithm for
Constrained Correlation Clustering computing a 16-approximation in time Õ(n3).

We first show how to obtain this result, but with a randomized algorithm that holds with
high probability, instead of a deterministic one. In order to do so, we perform a (deterministic)
preprocessing step and then use the CC-PIVOT algorithm. Of course CC-PIVOT alone,
without the preprocessing step, would not output a clustering respecting the hard constraints.
Its properties however (and more generally the properties of PIVOT algorithms) are crucial;
we are not aware of any other algorithm that we could use instead and still satisfy all the
hard constraints of Constrained Correlation Clustering after our preprocessing step.

To obtain our deterministic algorithm we derandomize the CC-PIVOT algorithm.

▶ Theorem 2 (Deterministic PIVOT). There are the following deterministic PIVOT algo-
rithms for Correlation Clustering:

3 We write Õ(T) to suppress polylogarithmic factors, i.e., Õ(T) = T (log T)O(1).

4 A Faster Algorithm for Constrained Correlation Clustering

A combinatorial (3 + ϵ)-approximation, for any constant ϵ > 0, in time Õ(n3).
A non-combinatorial 3-approximation in time Õ(n5).

We note that the final approximation of our algorithm for Constrained Correlation
Clustering depends on the approximation of the applied PIVOT algorithm. If it was possible
to select the order of the pivots in a way that guarantees a better approximation, this would
immediately improve the approximation of our Constrained Correlation Clustering algorithm.
For this reason, we study lower bounds for PIVOT; currently, we know of instances for which
selecting the pivots at random doesn’t give a better-than-3-approximation in expectation [3];
however, for these particular instances there does exist a way to choose the pivots that
gives better approximations. Ideally, we want a lower bound applying for any order of the
pivots (such as the lower bound for the generalized PIVOT solving the Ultrametric Violation
Distance problem in [22]). We show that our algorithm is optimal, as there exist instances
where no ordering of the pivots will yield a better-than-3-approximation.

▶ Theorem 3 (PIVOT Lower Bound). There is no constant ϵ > 0 for which there exists a
PIVOT algorithm for Correlation Clustering with approximation factor 3− ϵ.

We also introduce the Node-Weighted Correlation Clustering problem, which is related
to (but incomparable, due to their asymmetric assignment of weights) a family of problems
introduced in [39]. As weighted Correlation Clustering is equivalent to Multicut, improving
over the current Θ(log n)-approximation seems out of reach. The advantage of our alternative
type of weighted Correlation Clustering is that it is natural and approximable within a
constant factor.

In Node-Weighted Correlation Clustering we assign weights to the nodes, rather than
to pairs of nodes. Violating the preference between nodes u, v with weights ωu and ωv

incurs cost ωu · ωv. We provide three algorithms computing (almost-)3-approximations for
Node-Weighted Correlation Clustering:

▶ Theorem 4 (Node-Weighted Correlation Clustering, Deterministic). There are the following
deterministic algorithms for Node-Weighted Correlation Clustering:

A combinatorial (3 + ϵ)-approximation, for any constant ϵ > 0, in time Õ(n3).
A non-combinatorial 3-approximation in time O(n7.116).

▶ Theorem 5 (Node-Weighted Correlation Clustering, Randomized). There is a randomized
combinatorial algorithm for Node-Weighted Correlation Clustering computing an expected
3-approximation in time O(n + m) with high probability 1− 1/ poly(n).

1.3 Overview of Our Techniques
Constrained Correlation Clustering. We obtain a faster algorithm for Constrained Correla-
tion Clustering by
1. modifying the input graph using a subroutine aware of the hard-constraints, and
2. applying a PIVOT algorithm on this modified graph.
In fact, no matter what PIVOT algorithm is used, the output clustering respects all hard
constraints when the algorithm is applied on the modified graph.

To motivate this two-step procedure, we note that inputs exist where no PIVOT algorithm,
if applied to the unmodified graph, would respect the hard constraints. One such example is
the cycle on four vertices, with two vertex-disjoint edges made into hard constraints.

The solution of [37] is similar to ours, as it also modifies the graph before applying a
Correlation Clustering algorithm. However, both their initial modification and the follow-
ing Correlation Clustering algorithm require solving the standard LP, which is expensive

N. Fischer, E. Kipouridis, J. Klausen, and M. Thorup 5

(Ω(n7.113) time). In our case both steps are implemented with deterministic and combinatorial
algorithms which brings the running time down to Õ(n3).

For the first step, our algorithm carefully modifies the input graph so that on one hand
the optimal cost is not significantly changed, and on the other hand any PIVOT algorithm
on the transformed graph returns a clustering that respects all hard constraints. For the
second step, we use a deterministic combinatorial PIVOT algorithm.

Concerning the effect of modifying the graph, roughly speaking we get that the final
approximation factor is (2 +

√
5) · α + 3, where α is the approximation factor of the PIVOT

algorithm we use. Plugging in α = 3 + ϵ from Theorem 2 we get the first combinatorial
constant-factor approximation for Constrained Correlation Clustering in Õ(n3) time.

Node-Weighted Correlation Clustering. We generalize the deterministic combinatorial
techniques from before to the Node-Weighted Correlation Clustering problem. In addition,
we also provide a very efficient randomized algorithm for the problem. It relies on a weighted
random sampling technique.

One way to view the algorithm is to reduce Node-Weighted Correlation Clustering to an
instance of Constrained Correlation Clustering, with the caveat that the new instance’s size
depends on the weights (and can thus even be exponential). Each node u is replaced by a
set of nodes of size related to u’s weight and these nodes have constraints forcing them to be
in the same cluster.

We show that we can simulate a simple randomized PIVOT algorithm on that instance,
where instead of sampling uniformly at random, we sample with probabilities proportional
to the weights. Assuming polynomial weights, we can achieve this in linear time. To do so,
we design an efficient data structure supporting such sampling and removal of elements.

It is easy to implement such a data structure using any balanced binary search tree,
but the time for constructing it and applying all operations would be O(n log n). Using a
non-trivial combination of the Alias Method [41, 40] and Rejection Sampling, we achieve a
linear bound.

Due to space constraints the presentation of our algorithms for Node-Weighted Correlation
Clustering is deferred to Appendix D.

Deterministic PIVOT algorithms. Our algorithms are based on a simple framework by
van Zuylen and Williamson [37]. In this framework we assign a nonnegative “charge” to
each pair of nodes. Using these charges, a PIVOT algorithm decides which pivot to choose
next. The approximation factor depends on the total charge (as compared with the cost of
an optimal clustering), and the minimum charge assigned to any bad triplet (an induced
subgraph K1,2).

The reason why these bad triplets play an important role is that for any bad triplet, any
clustering needs to pay at least 1. To see this, let uvw be a bad triplet with uv being the
only missing edge. For a clustering to pay 0, it must be the case that both uw and vw are
together. However, this would imply that uv are also together although they prefer not to.

Our combinatorial (3 + ϵ)-approximation uses the multiplicative weights update method,
which can be intuitively described as follows: We start with a tiny charge on all pairs. Then
we repeatedly find a bad triplet uvw with currently minimal charge (more precisely: for
which the sum of the charges of uv, vw, wu is minimal), and scale the involved charges by
1 + ϵ. One can prove that this eventually results in an almost-optimal distribution of charges,
up to rescaling.

6 A Faster Algorithm for Constrained Correlation Clustering

For this purpose it suffices to show that the total assigned charge is not large compared
to the cost of the optimal correlation clustering. We do so by observing that our algorithm
(1 + ϵ)-approximates the covering LP of Figure 1, which we refer to as the charging LP.

Our faster deterministic non-combinatorial algorithm solves the charging LP using an LP
solver tailored to covering LPs [4, 42]. An improved solver for covering LPs would directly
improve the running time of this algorithm.

Figure 1 The primal and dual LP relaxations for Correlation Clustering, which we refer to as
the charging LP. T (G) is the set of all bad triplets in G.

min
∑

uv∈(V
2)

xuv

s.t. xuv + xvw + xwu ≥ 1 ∀uvw ∈ T (G),
xuv ≥ 0 ∀uv ∈

(
V
2
)

max
∑

uvw∈T (G)

yuvw

s.t.
∑

w:uvw∈T (G)

yuvw ≤ 1 ∀uv ∈
(

V
2
)
,

yuvw ≥ 0 ∀uvw ∈ T (G)

Lower Bound. Our lower bound is obtained by taking a complete graph Kn for some even
number of vertices n, and removing a perfect matching. Each vertex in the resulting graph is
adjacent to all but one other vertex and so any PIVOT algorithm will partition the vertices
into a large cluster of n − 1 vertices and a singleton cluster. A non PIVOT algorithm,
however, is free to create just a single cluster of size n, at much lower cost. The ratio between
these solutions tends to 3 with increasing n.

We note that in [3] the authors proved that CC-PIVOT’s analysis is tight. That is, its
expected approximation factor is not better than 3. However, their lower bound construction
(a complete graph Kn minus one edge) only works for CC-PIVOT, not for PIVOT algorithms
in general.

1.4 Open Problems
We finally raise some open questions.
1. Can we improve the approximation factor of Constrained Correlation Clustering from 16

to 3 while keeping the running time at Õ(n3)?
2. We measure the performance of a PIVOT algorithm by comparing it to the best correlation

clustering obtained by any algorithm. But as Theorem 3 proves, there is no PIVOT
algorithm with an approximation factor better than 3. If we instead compare the output
to the best correlation clustering obtained by a PIVOT algorithm, can we get better
guarantees (perhaps even an exact algorithm in polynomial time)?

3. In the Node-Weighted Correlation Clustering problem, we studied the natural objective
of minimizing the total cost ωv · ωu of all violated preferences uv. Are there specific

N. Fischer, E. Kipouridis, J. Klausen, and M. Thorup 7

applications of this problem? Can we achieve similar for other cost functions such
as ωv + ωu?

2 Preliminaries

We denote the set {1, . . . , n} by [n]. We denote all subsets of size k of a set A by
(

A
k

)
. The

symmetric difference between two sets A, B is denoted by A△B. We write poly(n) = nO(1)

and Õ(n) = n(log n)O(1).
In this paper all graphs G = (V, E) are undirected and unweighted. We typically

set n = |V | and m = |E|. For two disjoint subsets U1, U2 ⊆ V , we denote the set of edges
with one endpoint in U1 and the other in U2 by E(U1, U2). The subgraph of G induced by
vertex-set U1 is denoted by G[U1]. For vertices u, v, w we often abbreviate the (unordered)
set {u, v } by uv and similarly write uvw for {u, v, w }. We say that uvw is a bad triplet
in G if the induced subgraph G[uvw] contains exactly two edges (i.e., is isomorphic to K1,2).
Let T (G) denote the set of bad triplets in G. We say that the edge set EC of a clustering
C = {C1, . . . , Ck } of V is the set of pairs with both endpoints in the same set in C. More
formally, EC =

⋃k
i=1

(
Ci

2
)
.

We now formally define the problems of interest.

▶ Definition 6 (Correlation Clustering). Given a graph G = (V, E), output a clustering
C = {C1, . . . , Ck } of V with edge set EC minimizing |E △ EC |.

An algorithm for Correlation Clustering is said to be a PIVOT algorithm if it is an
instantiation of Algorithm 1 (Page 2). That is, an algorithm which, based on some criterion,
picks an unclustered node u (the pivot), creates a cluster containing u and its unclustered
neighbors in (V, E), and repeats the process until all nodes are clustered. In particular, the
algorithm may not modify the graph in other ways before choosing a pivot.

The constrained version of Correlation Clustering is defined as follows.

▶ Definition 7 (Constrained Correlation Clustering). Given a graph G = (V, E), a set of friendly
pairs F ⊆

(
V
2
)

and a set of hostile pairs H ⊆
(

V
2
)
, compute a clustering C = {C1, . . . , Ck }

of V with edge set EC such that no pair uv ∈ F has u, v in different clusters and no
pair uv ∈ H has u, v in the same cluster. The clustering C shall minimize |E △ EC |.

We also introduce Node-Weighted Correlation Clustering, a new related problem that
may be of independent interest.

▶ Definition 8 (Node-Weighted Correlation Clustering). Given a graph G = (V, E) and positive
weights {ωu }u∈V on the nodes, compute a clustering C = {C1, . . . , Ck } of V with edge
set EC minimizing

∑

uv∈E△EC

ωu · ωv .

For simplicity, we assume that the weights are bounded by poly(n), and thereby fit into
a constant number of word RAM cells of size w = Θ(log n). We remark that our randomized
algorithm would be a polynomial (but not linear) time one if we allowed the weights to be of
exponential size.

The Node-Weighted Correlation Clustering problem clearly generalizes Correlation Clus-
tering since we pay w(u) · w(v) (instead of 1) for each pair uv violating a preference.

8 A Faster Algorithm for Constrained Correlation Clustering

3 Combinatorial Algorithms for Constrained Correlation Clustering

Let us fix the following notation: A connected component in (V, F) is a supernode. The set
of supernodes partitions V and is denoted by SN . Given a node u, we let s(u) be the unique
supernode containing u. Two supernodes U, W are hostile if there exists a hostile pair uw

with u ∈ U, w ∈W . Two supernodes U, W are connected if |E(U, W)| ≥ 1. Two supernodes
U, W are β-connected if |E(U, W)| ≥ β · |U | · |W |.

The first step of our combinatorial approach is to transform the graph G into a more
manageable form G′, see procedure Transform of Algorithm 2. The high-level idea is that
in G′:

1. If uv is a friendly pair, then u and v are connected and have the same neighborhood.
2. If uv is a hostile pair, then u and v are not connected and have no common neighbor.
3. An O(1)-approximation of the G′ instance is also an O(1)-approximation of the G instance.
As was already noticed in [37], Properties 1 and 2 imply that a PIVOT algorithm on G′ gives
a clustering satisfying the hard constraints. Along with Property 3 and our deterministic
combinatorial PIVOT algorithm for Correlation Clustering in Theorem 2, we prove Theorem 1.
Properties 1 and 2 (related to correctness) and the running time (Õ(n3)) of our algorithm
are relatively straightforward to prove. Due to space constraints, their proofs can be found
in Appendix C. In this section we instead focus on the most technically challenging part, the
approximation guarantee.

Our algorithm works as follows (see also Figure 2): If some supernode is hostile to
itself, then it outputs that no clustering satisfies the hard constraints. Else, starting from
the edge set E, it adds all edges within each supernode. Then it drops all edges between
hostile supernodes. Subsequently, it repeatedly detects hostile supernodes that are connected
with the same supernode, and drops one edge from each such connection. Finally, for each
β-connected pair of supernodes, it connects all their nodes if β > 3−

√
5

2 , and disconnects
them otherwise4.

From a high-level view, the first two modifications are directly related to the hard
constraints: If u1, u2 are friendly and u2, u3 are friendly, then any valid clustering has u1, u3
in the same cluster, even if a preference discourages it. Similarly, if u1, u2 are friendly, u3, u4
are friendly, but u1, u3 are hostile, then any valid clustering has u2, u4 in different clusters,
even if a preference discourages it. Our first two modifications simply make the preferences
consistent with the hard constraints.

The third modification guarantees that hostile supernodes share no common neighbor.
A PIVOT algorithm will thus never put their nodes in the same cluster, as the hostility
constraints require. Concerning the cost, notice that if hostile supernodes U1, U2 are connected
with supernode U3, then no valid clustering can put all three of them in the same cluster.
Therefore we always need to pay either for the connections between U1 and U3, or for the
connections between U2 and U3.

Finally, after the rounding step, for each pair of supernodes U1, U2, the edge set E(U1, U2)
is either empty or the full set of size |U1| · |U2|. This ensures that a PIVOT algorithm
always puts all nodes of a supernode in the same cluster, thus also obeying the friendliness
constraints. Concerning the cost of the rounded instance, a case analysis shows that it is
always within a constant factor of the cost of the instance before rounding.

4 The constant 3−
√

5
2 optimizes the approximation factor. The natural choice of 0.5 would still give a

constant approximation factor, albeit slightly worse.

N. Fischer, E. Kipouridis, J. Klausen, and M. Thorup 9

3

1

4

7 6

2
5

(a) The original graph. The set of friendly
pairs is F = {{1, 2}, {2, 3}, {4, 5}, {6, 7}},
and the only hostile pair in H is {2, 5}.

2

3

1

4

5

7 6

(b) Line 3 introduces edge {1, 3}, and
Line 4 disconnects the supernodes contain-
ing 2 and 5.

2

3

1

4

5

7 6

(c) Line 6 removes the pair of edges {1, 7}
and {4, 6} because 1, 4 are in hostile supern-
odes while 6, 7 are in the same supernode.

2

3

1

4

5

7 6

(d) Line 9 introduces all edges connecting
supernodes {4, 5} and {6, 7} because there
were enough edges between them already.

Figure 2 Illustrates an application of TRANSFORM(G,F,H) (Algorithm 2). In the transformed
graph, for any two supernodes U1, U2, either all pairs with an endpoint in U1 and an endpoint in U2
share an edge, or none of them do. Furthermore, all pairs within a supernode are connected and no
hostile supernodes are connected.

Formally, let E′ be the edge set of the transformed graph G′, let E3 be the edge set at
Line 8 of Algorithm 2 (exactly before the rounding step), OPT be the edge set of an optimal
clustering for E satisfying the hard constraints described by F and H, OPT′ be the edge
set of an optimal clustering for the preferences defined by E′, and EC be the edge set of
the clustering returned by our algorithm. Finally, let α be the approximation factor of the
PIVOT algorithm used.

▶ Lemma 9. Given an instance (V, E, F, H) of Constrained Correlation Clustering, if two
nodes u1, u2 are in the same supernode, then they must be in the same cluster.

Proof. The proof follows by “in the same cluster” being a transitive property.
More formally, u1, u2 are in the same connected component in (V, F), as s(u1) = s(u2).

Thus, there exists a path from u1 to u2. We claim that all nodes in a path must be in the
same cluster. This is trivial if the path is of length 0 (u1 = u2) or of length 1 (u1u2 ∈ F). Else,
the path is u1, w1, . . . , wk, u2 for some k ≥ 1. We inductively have that all of w1, . . . , wk, u2
must be in the same cluster, and u1 must be in the same cluster with w1 because u1w1 ∈ F .
Therefore, all nodes in the path must be in the same cluster with w1. ◀

We now show that it is enough to bound the symmetric difference between E and E′.

10 A Faster Algorithm for Constrained Correlation Clustering

Algorithm 2 The procedure ConstrainedCluster is given a graph G = (V, E) describ-
ing the preferences, a set of friendly pairs F and a set of hostile pairs H. It creates a new
graph G′ using the procedure Transform and uses any PIVOT algorithm on G′ to return
a clustering.

procedure Transform(G = (V, E), F, H)
1 Compute the connected components of (V, F)

// Impossible iff some pair must both be and not be in the same
cluster.

2 if ∃U ∈ SN hostile to itself then return G′ = (∅, ∅)
// Connect nodes in the same supernode.

3 E1 ← E ∪ {uv ∈
(

V
2
)
| s(u) = s(v) }

// Disconnect pairs in hostile supernodes.
4 E2 ← E1 \ {uv ∈

(
V
2
)
| s(u) and s(v) are hostile }

// While hostile supernodes U1, U2 are both connected with super-
// node U3, drop an edge between U1, U3 and an edge between U2, U3

5 E3 ← E2

6 while ∃U1, U2, U3 ∈
(

SN
3

)
such that U1, U2 are hostile and

∃u1 ∈ U1, u2 ∈ U2, u3 ∈ U3, u′
3 ∈ U3 such that u1u3 ∈ E3, u2u′

3 ∈ E3 do
7 E3 ← E3 \ {u1u3, u2u′

3 }

// Round connections between pairs of supernodes
8 E4 ← E3

9 foreach {U1, U2} ∈
(

SN
2

)
do

10 EU1,U2 ← {u1u2 | u1 ∈ U1, u2 ∈ U2}
11 if |EU1,U2 ∩ E4| > 3−

√
5

2 |U1| · |U2| then E4 ← E4 ∪ EU1,U2

12 else E4 ← E4 \ EU1,U2

13 return G′ = (V, E4)

procedure ConstrainedCluster(G = (V, E), F, H)
14 G′ ← Transform(G=(V,E), F, H)
15 if G′ = (∅, ∅) then return “Impossible”
16 return PIVOT(G′)

▶ Lemma 10. The cost of our clustering C is |E △ EC | ≤ (α + 1)|E △ E′|+ α|E △OPT|.
Proof. The symmetric difference of sets satisfies the triangle inequality; we therefore have

|E △ EC | ≤ |E △ E′|+ |E′ △ EC |.
C is an α-approximation for G′ = (V, E′) and thus |E′△EC | ≤ α|E′△OPT′ | ≤ α|E′△OPT |.
Therefore:

|E △ EC | ≤ |E △ E′|+ α|E′ △OPT| ≤ |E △ E′|+ α|E′ △ E|+ α|E △OPT|.
with the second inequality following by applying the triangle inequality again. ◀

In order to upper bound |E △ E′| by the cost of the optimal clustering |E △OPT|, we
first need to lower bound the cost of the optimal clustering.

N. Fischer, E. Kipouridis, J. Klausen, and M. Thorup 11

▶ Lemma 11. Let S be the set of all pairs of distinct supernodes U, W that are in the same
cluster in OPT. Then |E △OPT| ≥∑

{U,W }∈S |E(U, W)△ E3(U, W)|.
Proof. The high-level idea is that when a node is connected to two hostile nodes, then any
valid clustering needs to pay for at least one of these edges. Extending this fact to supernodes,
we construct an edge set of size

∑
{U,W }∈S |E(U, W) △ E3(U, W)| such that the optimal

clustering needs to pay for each edge in this set.
First, for any {U, W} ∈ S it holds that E(U, W) △ E3(U, W) = E(U, W) \ E3(U, W)

because Line 3 (Algorithm 2) does not modify edges between pairs of distinct supernodes,
and Lines 4 and 6 only remove edges.

Each edge of E(U, W) \E3(U, W) is the result of applying Line 6, seeing as Line 4 only
removes edges from hostile pairs of supernodes. Thus each edge uw ∈ E(U, W) \ E3(U, W)
can be paired up with a unique edge xy ∈ E which is removed together with uw. Without
loss of generality it holds that x ∈ U, y ∈ Z for some supernode Z different from U and W .
Due to the way Line 6 chooses edges it must be the case that Z and W are hostile, hence
xy ∈ E △OPT.

Summing over all pairs of clustered supernodes gives the result stated in the lemma. ◀

We are now ready to bound |E △ E′|.
▶ Lemma 12. |E △ E′| ≤ (1 +

√
5)|E △OPT|

Proof. To prove this, we first charge each pair of nodes in a way such that the total charge
is at most 2|E △OPT|. Then we partition the pairs of nodes into 5 different sets, and show
that the size of the intersection between E△E′ and each of the 5 sets is at most 1+

√
5

2 times
the total charge given to the pairs in the given set.

The first three sets contain the pairs across non-hostile supernodes; out of them the first
one is the most technically challenging, requiring a combination of Lemma 11 (related to
Line 6 of Algorithm 2) and a direct analysis on E △OPT, as neither of them would suffice
on their own. The analysis of the second and third sets relate to the rounding in Line 9. The
fourth set contains pairs across hostile supernodes, while the fifth set contains pairs within
supernodes. Their analysis is directly based on the hard constraints.

Let us define our charging scheme: first, each pair of nodes is charged if the optimal
clustering pays for it, i.e. if this pair is in E △OPT. We further put a charge on the pairs
uw ∈ E△E3 which connect supernodes that are clustered together in OPT. Notice that the
number of such edges is a lower bound on |E △OPT | by Lemma 11. Therefore the total
charge over all pairs of nodes is at most 2|E △OPT | and no pair is charged twice.

Case 1: Consider two distinct supernodes U, W that are not hostile, which have more
than 3−

√
5

2 |U |·|W | edges between them in E, and have at most 3−
√

5
2 |U |·|W | edges in E3. Then

the rounding of Line 9 removes all edges between them. Therefore |E(U, W)△ E′(U, W)| =
|E(U, W)| ≤ |U | · |W |. If OPT separates U and W , then the pairs are charged |E(U, W)|;
else they are charged |U | · |W | − |E(U, W)| due to the part of the charging scheme related
to E △ OPT. In the latter case, they are also charged |E(U, W)| − |E3(U, W)| due to the
part of the charging scheme related to Lemma 11. Therefore they are charged at least

|U | · |W | − |E(U, W)|+ |E(U, W)| − |E3(U, W)| = |U | · |W | − |E3(U, W)|
≥ |U | · |W | − 3−

√
5

2 |U | · |W |.
Thus, in the worst case, these pairs contribute

max
{
|E(U, W)|
|E(U, W)| ,

|E(U, W)|
|U | · |W | − 3−

√
5

2 |U | · |W |

}
≤ 1

1− 3−
√

5
2

= 1 +
√

5
2

12 A Faster Algorithm for Constrained Correlation Clustering

times more in |E △ E′| compared to their charge.

Case 2: Consider two distinct supernodes U, W that are not hostile, which have more
than 3−

√
5

2 |U | · |W | edges between them in E, and more than 3−
√

5
2 |U | · |W | edges in E3.

Then the rounding of Line 9 will include all |U | · |W | edges between them. Thus we have
|E(U, W)△ E′(U, W)| = |U | · |W | − |E(U, W)| < (1− 3−

√
5

2)|U | · |W |. If OPT separates U

and W it pays for |E(U, W)| > 3−
√

5
2 |U | · |W | pairs. Otherwise it pays |U | · |W | − |E(U, W)|.

Thus, in the worst case, these pairs contribute 1− 3−
√

5
2

3−
√

5
2

= 1+
√

5
2 times more in |E △ E′|

compared to their charge.

Case 3: If two distinct supernodes U, W are not hostile and have at most 3−
√

5
2 |U | · |W |

edges between them in E, then they also have at most that many edges in E3 as we
only remove edges between such supernodes. There are thus no edges between them in
E′, meaning that |E(U, W)△ E′(U, W)| = |E(U, W)| ≤ 3−

√
5

2 |U | · |W |. If OPT separates
U, W it pays for |E(U, W)| pairs related to the connection between U, W ; else it pays for
|U | · |W | − |E(U, W)| ≥ (1− 3−

√
5

2)|U | · |W | > 3−
√

5
2 |U | · |W |. Thus these pairs’ contribution

in |E △ E′| is at most as much as their charge.

Case 4: Pairs uv with s(u) ̸= s(v) and s(u) hostile with s(v) are not present in E′. That is
because by Line 4 no pair of hostile supernodes is connected; then Line 6 only removes edges,
and Line 9 does not add any edge between s(u) and s(v) as they had 0 ≤ 3−

√
5

2 |s(u)| · |s(v)|
edges between them. The edge uv is also not present in OPT as s(u) and s(v) are not in the
same cluster because they are hostile. These pairs’ contribution in |E △ E′| is exactly equal
to their charge.

Case 5: Pairs uv with s(u) = s(v) are present in E′ by Line 3 and the fact that all
subsequent steps only modify edges whose endpoints are in different supernodes. The pair
uv is also present in OPT, by Lemma 9. Therefore these pairs’ contribution in |E △E′| is
exactly equal to their charge.

In the worst case, the pairs of each of the five sets contribute at most 1+
√

5
2 times more

in |E △ E′| compared to their charge, which proves our lemma. ◀

We are now ready to prove the main theorem.

Proof of Theorem 1. In Theorem 2 we established that there is a deterministic combinatorial
PIVOT algorithm computing a Correlation Clustering with approximation factor α = 3 + ϵ

in time Õ(n3), for any constant ϵ > 0. Using this algorithm in Algorithm 2 gives a valid
clustering. By Lemmas 10 and 12, its approximation factor is bounded by (α+1)·(1+

√
5)+α.

This is less than 16 for ϵ = 0.01. ◀

4 PIVOT Algorithms for Correlation Clustering

4.1 Lower Bound
First we prove Theorem 3 which states that there is no PIVOT algorithm for Correlation
Clustering with approximation factor better than 3.

Proof of Theorem 3. Let G = ([2n], E) for some integer n, where the edge set E contains
all pairs of nodes except for pairs of the form (2k + 1, 2k + 2). In other words, the edge set
of G contains all edges except for a perfect matching.

N. Fischer, E. Kipouridis, J. Klausen, and M. Thorup 13

Note that if we create a single cluster containing all nodes, then the cost is exactly n.
On the other hand, let u be the first choice that a PIVOT algorithm makes. If u is even,
let v = u− 1, otherwise let v = u + 1. By definition of G, v is the only node not adjacent
to u. Therefore, the algorithm creates two clusters—one containing all nodes except for v,
and one containing only v. There are 2n− 2 edges across the two clusters, and n− 1 missing
edges in the big cluster, meaning that the cost is 3n− 3.

Therefore, the approximation factor of any PIVOT algorithm is at least (3n−3)/n = 3− 3
n .

This proves the theorem, as for any constant less than 3, there exists a sufficiently large n

such that 3− 3
n is larger than that constant. ◀

4.2 Optimal Deterministic PIVOT: 3-Approximation
A covering LP is a linear program of the form minx{ cx | Ax ≥ b } where A, b, c, and x

are restricted to vectors and matrices of non-negative entries. Covering LPs can be solved
more efficiently than LPs in general and we rely on the following known machinery to prove
Theorem 2:

▶ Theorem 13 (Covering LPs, Combinatorial [30, 28]). Any covering LP with at most N

nonzero entries in the constraint matrix can be (1 + ϵ)-approximated by a combinatorial
algorithm in time Õ(Nϵ−3).5

▶ Theorem 14 (Covering LPs, Non-Combinatorial [4, 42]). Any covering LP with at most N

nonzero entries in the constraint matrix can be (1 + ϵ)-approximated in time Õ(Nϵ−1).

Of the two theorems, the time complexity of the algorithm promised by Theorem 14 is
obviously better. However, the algorithm of Theorem 13 is remarkably simple in our setting
and could thus prove to be faster in practice. Note that either theorem suffices to obtain a
(3 + ϵ)-approximation for Correlation Clustering in Õ(n3) time, for constant ϵ > 0.

For completeness, and in order to demonstrate how simple the algorithm from Theorem 13
is in our setting, we include the pseudocode as Algorithm 3. In Appendix A we formally
prove that Algorithm 3 indeed has the properties promised by Theorem 13.

The solution found by Algorithm 3 is used together with the framework by van Zuylen and
Williamson [37], see Cluster in Algorithm 4. Cluster is discussed further in Appendix B,
where the following lemmas are proven.

▶ Lemma 15 (Correctness of Cluster). Assume that x = {xuv }uv is a feasible solution to the
LP in Figure 1. Then Cluster(G, x) computes a correlation clustering of cost 3

∑
uv xuv. In

particular, if x is an α-approximate solution to the LP (for some α ≥ 1), then Cluster(G, x)
returns a 3α-approximate correlation clustering.

▶ Lemma 16 (Running Time of Cluster, [37]). Cluster(G, x) runs in time O(n3).

Given Theorems 13 and 14 we quickly prove Theorem 2.

Proof of Theorem 2. We compute a (1 + ϵ/3)-approximate solution x of the charging LP
using Theorem 13 (that is, using the procedure Charge(G)). Plugging this solution x into

5 The running time we state seems worse by a factor of ϵ−1 as compared to the theorems in [30, 28].
This is because the authors assume access to a machine model with exact arithmetic of numbers of
size exponential in ϵ−1. We can simulate this model using fixed-point arithmetic with a running time
overhead of Õ(ϵ−1).

14 A Faster Algorithm for Constrained Correlation Clustering

Algorithm 3 The combinatorial algorithm to (1 + O(ϵ))-approximate the LP in Figure 1
(Page 6) using the multiplicative weights update method. The general method was given
by Garg and Könemann [30] and later refined by Fleischer [28]. We here use the notation
m(x) = minuvw∈T (G) xuv + xvw + xwu.

procedure Charge(G = (V, E))
1 Initialize xuv, x∗

uv ← 1 for all uv ∈
(

V
2
)

2 while
∑

uv xuv < B := (
(

n
2
)
(1 + ϵ))1/ϵ / (1 + ϵ) do

3 Find a bad triplet uvw minimizing xuv + xvw + xwu

4 xuv ← (1 + ϵ) · xuv

5 xvw ← (1 + ϵ) · xvw

6 xwu ← (1 + ϵ) · xwu

7 if (
∑

uv xuv) / m(x) < (
∑

uv x∗
uv) / m(x∗) then

8 foreach uv ∈
(

V
2
)

do x∗
uv ← xuv

9 return {x∗
uv / m(x∗) }uv

Algorithm 4 The PIVOT algorithm by van Zuylen and Williamson [37]. Given a
graph G and a good charging { xuv }uv (in the sense of Lemma 15), it computes a correlation
clustering.

procedure Cluster(G = (V, E), x = {xuv }uv∈(V
2))

1 C ← ∅
2 while V ̸= ∅ do
3 Pick a pivot node u ∈ V minimizing

∑

vw:uvw∈T (G)

1

∑

vw:uvw∈T (G)

xvw

4 Add a cluster containing u and all its neighbors to C

5 Remove u, its neighbors and all their incident edges from G

6 return C

Cluster(G, x) returns a (3 + ϵ)-approximate correlation clustering by Lemma 15. The
total running time is bounded by O(n3) by Lemma 16 plus Õ(n3ϵ−3) by Theorem 13 (note
that there are n3 constraints, each affecting only a constant number of variables, hence the
number of nonzeros in the constraint matrix is N ≤ O(n3)). For constant ϵ > 0, this becomes
Õ(n3).

To obtain a 3-approximation, we observe that any correlation clustering has cost less
than

(
n
2
)
. Hence, we can run the previous algorithm with ϵ = 1/

(
n
2
)

and the (3 + ϵ)-
approximate solution is guaranteed to also be 3-approximate. The running time would be
bounded by Õ(n9). To improve upon this, we use the covering LP solver in Theorem 14 which
runs in time Õ(n3ϵ−1). By again setting ϵ = 1/

(
n
2
)
, the running time becomes Õ(n5). ◀

N. Fischer, E. Kipouridis, J. Klausen, and M. Thorup 15

References
1 Rakesh Agrawal, Alan Halverson, Krishnaram Kenthapadi, Nina Mishra, and Panayiotis

Tsaparas. Generating labels from clicks. In Ricardo Baeza-Yates, Paolo Boldi, Berthier A.
Ribeiro-Neto, and Berkant Barla Cambazoglu, editors, Proceedings of the Second International
Conference on Web Search and Web Data Mining, WSDM 2009, Barcelona, Spain, February
9-11, 2009, pages 172–181. ACM, 2009. doi:10.1145/1498759.1498824.

2 Nir Ailon and Moses Charikar. Fitting tree metrics: Hierarchical clustering and phylogeny.
SIAM J. Comput., 40(5):1275–1291, 2011. Announced at FOCS’05. doi:10.1137/100806886.

3 Nir Ailon, Moses Charikar, and Alantha Newman. Aggregating inconsistent information:
Ranking and clustering. J. ACM, 55(5):23:1–23:27, 2008. Announced in STOC 2005. doi:
10.1145/1411509.1411513.

4 Zeyuan Allen-Zhu and Lorenzo Orecchia. Nearly linear-time packing and covering LP solvers
– achieving width-independence and -convergence. Math. Program., 175(1-2):307–353, 2019.
doi:10.1007/s10107-018-1244-x.

5 Josh Alman and Virginia Vassilevska Williams. A refined laser method and faster matrix
multiplication. In Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms,
SODA 2021, Virtual Conference, January 10 - 13, 2021, pages 522–539. SIAM, 2021. doi:
10.1137/1.9781611976465.32.

6 Arvind Arasu, Christopher Ré, and Dan Suciu. Large-scale deduplication with constraints using
dedupalog. In Yannis E. Ioannidis, Dik Lun Lee, and Raymond T. Ng, editors, Proceedings of the
25th International Conference on Data Engineering, ICDE 2009, March 29 2009 - April 2 2009,
Shanghai, China, pages 952–963. IEEE Computer Society, 2009. doi:10.1109/ICDE.2009.43.

7 Sepehr Assadi and Chen Wang. Sublinear time and space algorithms for correlation clustering
via sparse-dense decompositions. CoRR, abs/2109.14528, 2021. URL: https://arxiv.org/
abs/2109.14528, arXiv:2109.14528.

8 Nikhil Bansal, Avrim Blum, and Shuchi Chawla. Correlation clustering. Mach. Learn.,
56(1-3):89–113, 2004. doi:10.1023/B:MACH.0000033116.57574.95.

9 Soheil Behnezhad, Moses Charikar, Weiyun Ma, and Li-Yang Tan. Almost 3-approximate
correlation clustering in constant rounds. In 63rd IEEE Annual Symposium on Foundations
of Computer Science, FOCS 2022, Denver, CO, USA, October 31 - November 3, 2022, pages
720–731. IEEE, 2022. doi:10.1109/FOCS54457.2022.00074.

10 Soheil Behnezhad, Moses Charikar, Weiyun Ma, and Li-Yang Tan. Single-pass streaming
algorithms for correlation clustering. In Nikhil Bansal and Viswanath Nagarajan, editors,
Proceedings of the 2023 ACM-SIAM Symposium on Discrete Algorithms, SODA 2023, Florence,
Italy, January 22-25, 2023, pages 819–849. SIAM, 2023. URL: https://doi.org/10.1137/1.
9781611977554.ch33, doi:10.1137/1.9781611977554.CH33.

11 Francesco Bonchi, Aristides Gionis, and Antti Ukkonen. Overlapping correlation clustering.
Knowl. Inf. Syst., 35(1):1–32, 2013. doi:10.1007/s10115-012-0522-9.

12 Mark Bun, Marek Eliás, and Janardhan Kulkarni. Differentially private correlation clustering.
In Marina Meila and Tong Zhang, editors, Proceedings of the 38th International Conference
on Machine Learning, ICML 2021, 18-24 July 2021, Virtual Event, volume 139 of Proceedings
of Machine Learning Research, pages 1136–1146. PMLR, 2021. URL: http://proceedings.
mlr.press/v139/bun21a.html.

13 Melanie Cambus, Fabian Kuhn, Etna Lindy, Shreyas Pai, and Jara Uitto. A (3+ε)-Approximate
Correlation Clustering Algorithm in Dynamic Streams, pages 2861–2880. SIAM, 2024. URL:
https://epubs.siam.org/doi/abs/10.1137/1.9781611977912.101, arXiv:https://epubs.
siam.org/doi/pdf/10.1137/1.9781611977912.101, doi:10.1137/1.9781611977912.101.

14 Nairen Cao, Vincent Cohen-Addad, Euiwoong Lee, Shi Li, Alantha Newman, and Lukas
Vogl. Understanding the cluster linear program for correlation clustering. In Bojan Mohar,
Igor Shinkar, and Ryan O’Donnell, editors, Proceedings of the 56th Annual ACM Symposium
on Theory of Computing, STOC 2024, Vancouver, BC, Canada, June 24-28, 2024, pages
1605–1616. ACM, 2024. doi:10.1145/3618260.3649749.

16 A Faster Algorithm for Constrained Correlation Clustering

15 Nairen Cao, Shang-En Huang, and Hsin-Hao SU. Breaking 3-Factor Approximation for
Correlation Clustering in Polylogarithmic Rounds, pages 4124–4154. SIAM, 2024. URL:
https://epubs.siam.org/doi/abs/10.1137/1.9781611977912.143, arXiv:https://epubs.
siam.org/doi/pdf/10.1137/1.9781611977912.143, doi:10.1137/1.9781611977912.143.

16 Deepayan Chakrabarti, Ravi Kumar, and Kunal Punera. A graph-theoretic approach to
webpage segmentation. In Jinpeng Huai, Robin Chen, Hsiao-Wuen Hon, Yunhao Liu, Wei-
Ying Ma, Andrew Tomkins, and Xiaodong Zhang, editors, Proceedings of the 17th International
Conference on World Wide Web, WWW 2008, Beijing, China, April 21-25, 2008, pages 377–386.
ACM, 2008. doi:10.1145/1367497.1367549.

17 Sayak Chakrabarty and Konstantin Makarychev. Single-pass pivot algorithm for correlation
clustering. keep it simple! CoRR, abs/2305.13560, 2023. URL: https://doi.org/10.48550/
arXiv.2305.13560, arXiv:2305.13560, doi:10.48550/ARXIV.2305.13560.

18 Moses Charikar, Venkatesan Guruswami, and Anthony Wirth. Clustering with qualitative
information. J. Comput. Syst. Sci., 71(3):360–383, 2005. Announced in FOCS 2003. doi:
10.1016/j.jcss.2004.10.012.

19 Shuchi Chawla, Konstantin Makarychev, Tselil Schramm, and Grigory Yaroslavtsev. Near
optimal LP rounding algorithm for correlation clustering on complete and complete k-partite
graphs. In Rocco A. Servedio and Ronitt Rubinfeld, editors, Proceedings of the Forty-Seventh
Annual ACM on Symposium on Theory of Computing, STOC 2015, Portland, OR, USA, June
14-17, 2015, pages 219–228. ACM, 2015. doi:10.1145/2746539.2746604.

20 Yudong Chen, Sujay Sanghavi, and Huan Xu. Clustering sparse graphs. In Peter L. Bartlett,
Fernando C. N. Pereira, Christopher J. C. Burges, Léon Bottou, and Kilian Q. Weinberger,
editors, Advances in Neural Information Processing Systems 25: 26th Annual Conference on
Neural Information Processing Systems 2012. Proceedings of a meeting held December 3-6,
2012, Lake Tahoe, Nevada, United States, pages 2213–2221, 2012. URL: https://proceedings.
neurips.cc/paper/2012/hash/1e6e0a04d20f50967c64dac2d639a577-Abstract.html.

21 Michael B. Cohen, Yin Tat Lee, and Zhao Song. Solving linear programs in the current matrix
multiplication time. In Proceedings of the 51st Annual ACM SIGACT Symposium on Theory
of Computing, STOC 2019, Phoenix, AZ, USA, June 23-26, 2019, pages 938–942. ACM, 2019.
doi:10.1145/3313276.3316303.

22 Vincent Cohen-Addad, Chenglin Fan, Euiwoong Lee, and Arnaud de Mesmay. Fitting
metrics and ultrametrics with minimum disagreements. In 63rd IEEE Annual Symposium on
Foundations of Computer Science, FOCS 2022, Denver, CO, USA, October 31 - November 3,
2022, pages 301–311. IEEE, 2022. doi:10.1109/FOCS54457.2022.00035.

23 Vincent Cohen-Addad, Silvio Lattanzi, Slobodan Mitrovic, Ashkan Norouzi-Fard, Nikos
Parotsidis, and Jakub Tarnawski. Correlation clustering in constant many parallel rounds. In
Marina Meila and Tong Zhang, editors, Proceedings of the 38th International Conference on
Machine Learning, ICML 2021, 18-24 July 2021, Virtual Event, volume 139 of Proceedings of
Machine Learning Research, pages 2069–2078. PMLR, 2021. URL: http://proceedings.mlr.
press/v139/cohen-addad21b.html.

24 Vincent Cohen-Addad, Euiwoong Lee, Shi Li, and Alantha Newman. Handling correlated
rounding error via preclustering: A 1.73-approximation for correlation clustering. In 64th IEEE
Annual Symposium on Foundations of Computer Science, FOCS 2023, Santa Cruz, CA, USA,
November 6-9, 2023, pages 1082–1104. IEEE, 2023. doi:10.1109/FOCS57990.2023.00065.

25 Vincent Cohen-Addad, Euiwoong Lee, and Alantha Newman. Correlation clustering with
sherali-adams. CoRR, abs/2207.10889, 2022. arXiv:2207.10889, doi:10.48550/arXiv.2207.
10889.

26 Vincent Cohen-Addad, David Rasmussen Lolck, Marcin Pilipczuk, Mikkel Thorup, Shuyi Yan,
and Hanwen Zhang. Combinatorial correlation clustering. In Bojan Mohar, Igor Shinkar,
and Ryan O’Donnell, editors, Proceedings of the 56th Annual ACM Symposium on Theory of
Computing, STOC 2024, Vancouver, BC, Canada, June 24-28, 2024, pages 1617–1628. ACM,
2024. doi:10.1145/3618260.3649712.

N. Fischer, E. Kipouridis, J. Klausen, and M. Thorup 17

27 Erik D. Demaine, Dotan Emanuel, Amos Fiat, and Nicole Immorlica. Correlation clustering in
general weighted graphs. Theor. Comput. Sci., 361(2-3):172–187, 2006. doi:10.1016/j.tcs.
2006.05.008.

28 Lisa Fleischer. A fast approximation scheme for fractional covering problems with variable
upper bounds. In Proceedings of the Fifteenth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2004, New Orleans, Louisiana, USA, January 11-14, 2004, pages 1001–1010.
SIAM, 2004. URL: http://dl.acm.org/citation.cfm?id=982792.982942.

29 Fedor V. Fomin, Stefan Kratsch, Marcin Pilipczuk, Michal Pilipczuk, and Yngve Villanger.
Tight bounds for parameterized complexity of cluster editing with a small number of clusters.
J. Comput. Syst. Sci., 80(7):1430–1447, 2014. doi:10.1016/j.jcss.2014.04.015.

30 Naveen Garg and Jochen Koenemann. Faster and simpler algorithms for multicommodity
flow and other fractional packing problems. In Proceedings of the 39th Annual Symposium on
Foundations of Computer Science, FOCS ’98, page 300, USA, 1998. IEEE Computer Society.

31 Svante Janson. Tail bounds for sums of geometric and exponential variables. Statistics &
Probability Letters, 135(C):1–6, 2018. doi:10.1016/j.spl.2017.11.017.

32 Dmitri V. Kalashnikov, Zhaoqi Chen, Sharad Mehrotra, and Rabia Nuray-Turan. Web people
search via connection analysis. IEEE Trans. Knowl. Data Eng., 20(11):1550–1565, 2008.
doi:10.1109/TKDE.2008.78.

33 Sungwoong Kim, Sebastian Nowozin, Pushmeet Kohli, and Chang Dong Yoo. Higher-order
correlation clustering for image segmentation. In John Shawe-Taylor, Richard S. Zemel,
Peter L. Bartlett, Fernando C. N. Pereira, and Kilian Q. Weinberger, editors, Advances in
Neural Information Processing Systems 24: 25th Annual Conference on Neural Information
Processing Systems 2011. Proceedings of a meeting held 12-14 December 2011, Granada,
Spain, pages 1530–1538, 2011. URL: https://proceedings.neurips.cc/paper/2011/hash/
98d6f58ab0dafbb86b083a001561bb34-Abstract.html.

34 Domenico Mandaglio, Andrea Tagarelli, and Francesco Gullo. Correlation clustering with
global weight bounds. In Nuria Oliver, Fernando Pérez-Cruz, Stefan Kramer, Jesse Read,
and José Antonio Lozano, editors, Machine Learning and Knowledge Discovery in Databases.
Research Track - European Conference, ECML PKDD 2021, Bilbao, Spain, September 13-17,
2021, Proceedings, Part II, volume 12976 of Lecture Notes in Computer Science, pages 499–515.
Springer, 2021. doi:10.1007/978-3-030-86520-7_31.

35 Gregory J. Puleo and Olgica Milenkovic. Correlation clustering with constrained cluster
sizes and extended weights bounds. SIAM J. Optim., 25(3):1857–1872, 2015. doi:10.1137/
140994198.

36 Jan van den Brand. A deterministic linear program solver in current matrix multiplication
time. In Proceedings of the 2020 ACM-SIAM Symposium on Discrete Algorithms, SODA
2020, Salt Lake City, UT, USA, January 5-8, 2020, pages 259–278. SIAM, 2020. doi:
10.1137/1.9781611975994.16.

37 Anke van Zuylen and David P. Williamson. Deterministic pivoting algorithms for constrained
ranking and clustering problems. Math. Oper. Res., 34(3):594–620, 2009. Announced in SODA
2007. doi:10.1287/moor.1090.0385.

38 Nate Veldt. Correlation clustering via strong triadic closure labeling: Fast approximation
algorithms and practical lower bounds. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song,
Csaba Szepesvári, Gang Niu, and Sivan Sabato, editors, International Conference on Machine
Learning, ICML 2022, 17-23 July 2022, Baltimore, Maryland, USA, volume 162 of Proceedings
of Machine Learning Research, pages 22060–22083. PMLR, 2022. URL: https://proceedings.
mlr.press/v162/veldt22a.html.

39 Nate Veldt, David F. Gleich, and Anthony Wirth. A correlation clustering framework for
community detection. In Pierre-Antoine Champin, Fabien Gandon, Mounia Lalmas, and
Panagiotis G. Ipeirotis, editors, Proceedings of the 2018 World Wide Web Conference on
World Wide Web, WWW 2018, Lyon, France, April 23-27, 2018, pages 439–448. ACM, 2018.
doi:10.1145/3178876.3186110.

18 A Faster Algorithm for Constrained Correlation Clustering

40 Michael D. Vose. A linear algorithm for generating random numbers with a given distribution.
IEEE Trans. Software Eng., 17(9):972–975, 1991. doi:10.1109/32.92917.

41 Alastair J. Walker. New fast method for generating discrete random numbers with arbitrary
frequency distributions. Electronics Letters, 10:127–128(1), April 1974.

42 Di Wang, Satish Rao, and Michael W. Mahoney. Unified acceleration method for packing and
covering problems via diameter reduction. In 43rd International Colloquium on Automata,
Languages, and Programming, ICALP 2016, July 11-15, 2016, Rome, Italy, volume 55 of
LIPIcs, pages 50:1–50:13. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2016. doi:
10.4230/LIPIcs.ICALP.2016.50.

43 Julian Yarkony, Alexander T. Ihler, and Charless C. Fowlkes. Fast planar correlation clustering
for image segmentation. In Andrew W. Fitzgibbon, Svetlana Lazebnik, Pietro Perona,
Yoichi Sato, and Cordelia Schmid, editors, Computer Vision - ECCV 2012 - 12th European
Conference on Computer Vision, Florence, Italy, October 7-13, 2012, Proceedings, Part VI,
volume 7577 of Lecture Notes in Computer Science, pages 568–581. Springer, 2012. doi:
10.1007/978-3-642-33783-3_41.

N. Fischer, E. Kipouridis, J. Klausen, and M. Thorup 19

A Analysis of CHARGE

In this appendix we prove that Charge (Algorithm 3, Page 14) computes a (1 + O(ϵ))-
approximation to the charging LP of Figure 1 in time O(n3 poly(log n/ϵ)), thus matching the
guarantees of Theorem 13. This algorithm was first developed by Garg and Könemann [30]
and later refined by Fleischer [28].

We analyze the algorithm using a primal–dual approach: We first argue that Charge(G)
constructs a good solution (up to rescaling) to the primal LP, and then compare this to an
optimal dual solution. The gap between primal and dual value is bounded by 1 + O(ϵ), and
by the weak duality theorem it follows that the primal solution computed by the algorithm
is (1 + O(ϵ))-approximately optimal.

Let us introduce some notation: Let t denote the total number of iterations of Charge(G).
For an iteration k, let x

(k)
uv denote the current value of xuv. We also write s(k) =

∑
uv x

(k)
uv and

m(k) = m(x(k)) = minuvw∈T (G) x
(k)
uv +x

(k)
vw +x

(k)
wu. Finally, we set s =

∑
uv x∗

uv and m = m(x∗).
We have s/m ≤ s(k)/m(k) for all iterations k by the way that x∗ is constructed.

▶ Observation 17 (Primal Solution). {x∗
uv/m }uv is a feasible primal solution with value s/m.

Proof. For any bad triplet uvw we have that x∗
uv + x∗

vw + x∗
wu ≥ m by definition. Hence

{x∗
uv/m } satisfies all primal constraints and is feasible. Its value is s/m by definition. ◀

▶ Observation 18 (Dual Solution). Let yuvw be the number of iterations in which uvw was
picked in Line 3, scaled by (log1+ϵ(B) + 1)−1. Then { yuvw }uvw is a feasible dual solution
with value t/(log1+ϵ(B) + 1).

Proof. In order to prove feasibility, we need to argue that uvw is selected in at most
log1+ϵ(B) + 1 iterations. Indeed, in every iteration where uvw is picked we multiplicatively
increase xuv by 1+ϵ. This can happen at most log1+ϵ(B)+1 times before the loop terminates.
The value of { yuvw }uvw is

∑
uvw yuvw = t/(log1+ϵ(B) + 1). ◀

We additionally need the following technical lemma.

▶ Lemma 19. For any iteration k, it holds that s(k) ≤
(

n
2
)
· exp(ϵkm/s).

Proof. The proof is by induction. For k = 0 the statement is clear since we initially
assign xuv ← 1 for all pairs uv. For k > 0 we have

s(k) = s(k−1) + ϵm(k−1) (1)
≤ s(k−1) · (1 + ϵm/s) (2)
≤

(
n
2
)
· exp(ϵ(k − 1)m/s) · (1 + ϵm/s) (3)

≤
(

n
2
)
· exp(ϵkm/s), (4)

where we used (1) the update rule in Lines 4–6, (2) the fact that s/m ≤ s(k)/m(k), (3) the
induction hypothesis and (4) the fact that 1 + x ≤ exp(x) for all real x. ◀

In combination we obtain the correctness of Charge(G):

▶ Lemma 20 (Correctness of Charge). The algorithm Charge(G) correctly computes
a (1 + O(ϵ))-approximate solution {x∗

uv/m }uv to the charging LP.

20 A Faster Algorithm for Constrained Correlation Clustering

Proof. In order to argue that the primal solution {x∗
uv/m }uv from Observation 17 is

(1 + O(ϵ))-approximate, it suffices to bound the gap to its corresponding dual solution from
Observation 18. Their gap is bounded by

s/m

t/(log1+ϵ(B) + 1) =
s(log1+ϵ(B) + 1)

mt

Recall that the algorithm terminates with s ≥ B, thus by Lemma 19 we obtain that
B ≤

(
n
2
)
· exp(ϵtm/s), or equivalently tm/s ≥ ϵ−1 ln(B/

(
n
2
)
). It follows that the gap is

bounded by

≤ ϵ(log1+ϵ(B) + 1)
ln(B/

(
n
2
)
)

= ln(B(1 + ϵ))
ln(B/

(
n
2
)
)
· ϵ

ln(1 + ϵ)

By setting B = (
(

n
2
)
(1 + ϵ))1/ϵ/(1 + ϵ) as in the algorithm, the first term becomes 1/(1− ϵ)

and thus

= 1
1− ϵ

· ϵ

ln(1 + ϵ)

≤ 1
1− ϵ

· ϵ

ϵ− ϵ2/2
≤ 1 + O(ϵ). ◀

▶ Lemma 21 (Running Time of Charge). The running time of Charge(G) is bounded by
O(n3 poly(log n/ϵ)).

Proof. Any variable xuv can be increased at most log1+ϵ(B) + 1 times. Hence, the total
number of iterations is bounded by O(n2 log1+ϵ(B)) = O(n2 poly(log n/ϵ)). To efficiently
implement the loop, we use a priority queue to maintain {xuv + xvw + xwu }uvw∈T (G). The
initialization takes time O(n3 log n). In each iteration we can select the minimum-weight bad
triplet in time O(log n) by a single query. Changing the three variables xuv, xvw, xwu affects
at most O(n) entries in the queue and therefore takes time O(n log n).

In the previous paragraph we assumed that arithmetic operations run in unit time.
However, observe that we work with numbers of magnitude up to B and precision ϵ. We can
perform arithmetic operations on numbers of that size in time poly(log(B/ϵ)) = poly(log n/ϵ).
Therefore, the total running time increases by a factor poly(log n/ϵ) and is still bounded by
O(n3 poly(log n/ϵ)) as claimed. ◀

B Correctness of CLUSTER

We borrow the algorithm from van Zuylen and Williamson [37], see Cluster in Algorithm 4.
We present our analysis using the charging LP relaxation in Lemma 15. To obtain a best-
possible PIVOT algorithm, think of the input x as an exact solution to the LP in Figure 1.
We denote its optimal value by OPT(LP) and the optimal value of the correlation clustering
by OPT(CC).

▶ Lemma 15 (Correctness of Cluster). Assume that x = {xuv }uv is a feasible solution to the
LP in Figure 1. Then Cluster(G, x) computes a correlation clustering of cost 3

∑
uv xuv. In

particular, if x is an α-approximate solution to the LP (for some α ≥ 1), then Cluster(G, x)
returns a 3α-approximate correlation clustering.

N. Fischer, E. Kipouridis, J. Klausen, and M. Thorup 21

Proof. Let G(i) = (V (i), E(i)) denote the graph G after the i-th iteration of the loop, i.e., G(0)

is the initial graph G and G(t) is the empty graph for t the total number of iterations. Let ui

denote the pivot node selected in the i-th iteration of the algorithm. It is easy to check that
the total number of violated preferences in the clustering C is equal to

t−1∑

i=0

∑

vw:
uivw∈T (G(i))

1

Indeed, in the i-th iteration we violate exactly the negative preferences of pairs vw which
are both neighbors of u, and the positive preferences of pairs vw for which exactly one is a
neighbor of u. In any such case and only in these cases, uvw is a bad triplet. Using that x is
a feasible LP solution, we obtain the following bound:

∑

u∈V (i)

∑

vw:
uvw∈T (G(i))

1 = 3 ·
∑

uvw∈T (G(i))

1

≤ 3 ·
∑

uvw∈T (G(i))

xuv + xvw + xwu

= 3 ·
∑

u∈V (i)

∑

vw:
uvw∈T (G(i))

xvw

By the way we picked ui in Line 3, we have that
∑

vw:uvw∈T (G(i)) 1 ≤ 3 ·∑
vw:uvw∈T (G(i)) xvw.

It follows that the total cost of the clustering is bounded by
t−1∑

i=0

∑

vw:
uivw∈T (G(i))

1 ≤ 3 ·
t−1∑

i=0

∑

vw:
uivw∈T (G(i))

xvw

≤ 3 ·
∑

vw∈(V
2)

xvw

Here, we used that every pair of vertices is counted for in exactly one graph G(i). This
finishes the first part of the lemma.

For the second part, assume that x is an α-approximate optimal solution, i.e.,
∑

uv xuv ≤
α OPT(LP). We claim that OPT(LP) ≤ OPT(CC). Indeed, we can plug in any correlation
clustering into the primal LP as follows: For every pair uv whose preference is violated
set xuv = 1 and for all other pairs set xuv = 0. The important observation is that in any
correlation clustering solution, we charge at least one edge in every bad triplet. Hence, the
constraints of the LP are satisfied, and we obtain a feasible solution of value OPT(CC). It
follows that the correlation clustering constructed by Cluster(G, x) has cost at most

3 ·
∑

uv∈(V
2)

xuv ≤ 3α ·OPT(LP) ≤ 3α ·OPT(CC) ◀

▶ Lemma 16 (Running Time of Cluster, [37]). Cluster(G, x) runs in time O(n3).

Proof. We can efficiently implement Cluster(G, x) by first precomputing
∑

vw:uvw∈T (G) 1
and

∑
vw:uvw∈T (G) xvw for every node u in time O(n3). Then in the remaining algorithm

we can efficiently select the pivot (for instance, by exhaustively checking all nodes u) and
remove its cluster from the graph. For every vertex u which is removed from the graph
in that way, we can enumerate all bad triplets involving u and update the precomputed
quantities appropriately. Since every node is removed exactly once, the total running time is
bounded by O(n3). ◀

22 A Faster Algorithm for Constrained Correlation Clustering

C Analysis of Constrained Correlation Clustering

Running Time. We first prove the running time of our algorithm.

▶ Lemma 22. The running time of Algorithm 2 is O(n(n + m) + T (n,
(

n
2
)
)), where T (n′, m′)

is an upper bound on the running time of the PIVOT algorithm we use on a graph with n′

nodes and m′ edges.

Proof. Computing the connected components of (V, F) takes O(n + |F |) time. Adding all
the edges between supernodes takes O(n2) time. Then we can contract the supernodes
(allowing parallel edges) in O(n2) time. Removing the edges between hostile supernodes
takes O(m + |H|) time.

For the steps in the loop of Line 6, notice that there are at most m edges connecting
distinct supernodes, as the only edges we added were internal in supernodes. We can iterate
over all these edges uv, and over all supernodes W . If W is connected with s(u) and hostile
with s(v), then we remove uv and an arbitrary edge connecting W with s(u), and similarly
if W is connected with s(v) and hostile with s(u). This takes O(n ·m) time. Each pair of
edges removed trivially satisfies the requirements of Line 6. As we do not add edges in this
step, it is impossible that when finishing there is still a pair of edges e1, e2 that needed to
be removed; when processing e1, we would remove e1 along with some other edge (possibly
different from e2).

Rounding the connections between pairs of supernodes is done in O(n2) time.
The final graph may have at most

(
n
2
)

edges (even if m was much smaller, e.g. in the case
where all nodes belong in the same supernode), therefore the time spent by the PIVOT
algorithm is at most T (n,

(
n
2
)
).

The claimed bound follows by both |F | and |H| being O(n2). ◀

Correctness. We finally prove correctness—that is, we prove that either the final algorithm
satisfies all hard constraints, or no clustering can satisfy the hard constraints and the
algorithm outputs “Impossible”.

We start with showing that our algorithm correctly detects all cases where the hard
constraints are impossible to satisfy.

▶ Lemma 23. Given an instance (V, E, F, H) of Constrained Correlation Clustering, the
graph G′ ← Transform(V, E, F, H) is equal to (∅, ∅) if and only if the Constrained Correla-
tion Clustering instance is impossible to satisfy.

Proof. We show that if two hostile nodes are in the same supernode, then the instance is not
satisfiable and the algorithm correctly determines it; on the other hand, if no such hostile
nodes exist, then there exists at least one valid clustering.

It holds that G′ = (∅, ∅) if there exist nodes u1, u2 such that u1, u2 are in the same
connected component of (V, F) and u1u2 ∈ H. Then u1, u2 must be in the same cluster
(Lemma 9) and not be in the same cluster (because u1u2 ∈ H). Therefore the instance is
impossible to satisfy.

Otherwise, no u1, u2 in the same supernode are hostile. Creating a cluster for each
supernode is a valid clustering. To see this, notice that no hostility constraint is violated,
by hypothesis. All friendliness constraints are satisfied because any two nodes that must
be linked belong in the same supernode, and thus in the same cluster. Therefore such an
instance is satisfiable. ◀

N. Fischer, E. Kipouridis, J. Klausen, and M. Thorup 23

In the following we can thus assume that we have a satisfiable instance with no supernode
being hostile to itself. The next lemma shows that friendly nodes have the same neighborhood
and are connected.

▶ Lemma 24. Given a satisfiable instance (V, E, F, H) of Constrained Correlation Clustering,
let G′ ← Transform(V, E, F, H). For any uv ∈ F , it holds that u, v are connected in G′

and their neighborhoods are the same.

Proof. The idea is that all nodes in the same supernode are explicitly connected by the
algorithm, in Line 3. Then all nodes of the same supernode connect to the exact same nodes
due to the rounding step in Line 9.

More formally, as uv ∈ F , they are trivially both in the same connected component
of (V, F). Thus they are in the same supernode.

As s(u) = s(v), u and v get connected in Line 3. All subsequent steps only modify
edges u′v′ where s(u′) ̸= s(v′), therefore u, v remain connected in G′. Similarly both u and v

are connected with all other nodes in s(u).
For nodes w ̸∈ s(u), when { s(u), s(w) } is processed in the loop of Line 9, either both u

and v get connected to w or both get disconnected by w. ◀

Similarly, hostile nodes are disconnected and do not share any common neighbor.

▶ Lemma 25. Given a satisfiable instance (V, E, F, H) of Constrained Correlation Clustering,
let G′ ← Transform(V, E, F, H). For any uv ∈ H it holds that u, v are not connected in
G′ and they have no common neighbor.

Proof. The idea is that all nodes in hostile supernodes are explicitly disconnected by the
algorithm, in Line 4. Then if two hostile nodes share a common neighbor, we drop both
edges in Line 6.

More formally, as the instance is satisfiable, we have that s(u) ̸= s(v) by Lemma 23.
Therefore no node in s(u) is connected with a node in s(v) after Line 4. In Line 6 we only
remove edges, meaning that when we process { s(u), s(v) } in the loop of Line 9, the two
supernodes are not connected, and they stay like that. Thus, u, v (and even s(u), s(v)) are
not connected in G′.

After Line 6, for any supernode W we have that at least one from s(u), s(v) are not
connected with W , or else the loop would not terminate. Assume without loss of generality
that s(u) is not connected with W . Therefore, s(u) is also not connected with W after the
loop of Line 9, meaning that even if v is connected with a node w ∈W , u is not as s(u) is
not connected with s(w) = W . This guarantees that they have no common neighbor. ◀

With these lemmas, we can conclude that a PIVOT algorithm on G′ gives a clustering
that satisfies the hard constraints. This was already observed in [37]; we include a short
proof for intuition, as we also use this lemma in Appendix D.

▶ Lemma 26. Let (V, E, F, H) be a satisfiable instance of Constrained Correlation Clustering
and G′ = (V, E′) be a graph such that any two friendly nodes are connected and have the
same neighborhood in G′, while hostile nodes are not connected and have no common neighbor
in G′. Then applying a PIVOT algorithm on G′ gives a clustering that satisfies the hard
constraints. In particular, this holds for G′ = Transform(V, E, F, H).

Proof. The idea is that due to the assumptions, the choice of the first pivot does not violate
any hard constraint. As PIVOT algorithms progress, they work with induced subgraphs of

24 A Faster Algorithm for Constrained Correlation Clustering

the original graph, which also satisfy the assumptions, and therefore no hard constraint is
ever violated.

For the sake of contradiction, assume that two hostile nodes u, v are placed in the same
cluster by a PIVOT algorithm. By definition of a PIVOT algorithm, this happens when we
work with some V ′ ⊆ V on the induced subgraph G′[V ′], and we pivot on a node w that is
connected with both u, v. As w is connected with both u, v in G′[V ′], it is also connected
with u, v in G′. But this contradicts the assumption on hostile nodes.

Similarly, for the sake of contradiction assume that two friendly nodes u, v are put in
separate clusters by a PIVOT algorithm. Without loss of generality assume that u is the first
to be placed in a cluster that does not contain v. Again, this happens when we work with
some V ′ ⊆ V on the induced subgraph G′[V ′], and we pivot on a node w that is connected
with u but not with v. As G′[V ′] is an induced subgraph, w is connected with u but not
with v in G′. But this contradicts the assumption on friendly nodes.

Therefore, by Lemmas 24 and 25 the claim holds for G′ = Transform(V, E, F, H). ◀

D Node-Weighted Correlation Clustering

Deterministic Algorithm. We first give the deterministic PIVOT algorithms for Node-
Weighted Correlation Clustering (Theorem 4). We summarize the pseudocode in Algorithm 5.
The analysis of the deterministic algorithm is similar to the PIVOT algorithm in Section 4.

Figure 3 The LP relaxation for Node-Weighted Correlation Clustering.

min
∑

uv∈(V
2)

xuv

s.t. xuv

ωuωv
+ xvw

ωvωw
+ xwu

ωwωu
≥ 1 ∀uvw ∈ T (G),

xuv ≥ 0 ∀uv ∈
(

V
2
)

Algorithm 5 The adapted PIVOT algorithm to (3 + ϵ)-approximate Node-Weighted
Correlation Clustering.

1 Compute a (1 + ϵ
3)-approximate solution x = {xuv }uv∈(V

2) of the LP in Figure 3
2 C ← ∅
3 while V ̸= ∅ do
4 Pick a pivot node u ∈ V minimizing

∑

vw:uvw∈T (G)

ωvωw

∑

vw:uvw∈T (G)

xvw

5 Add a cluster containing u and all its neighbors to C

6 Remove u, its neighbors and all their incident edges from G

7 return C

N. Fischer, E. Kipouridis, J. Klausen, and M. Thorup 25

▶ Lemma 27 (Correctness of Algorithm 5). Algorithm 5 correctly approximates Node-Weighted
Correlation Clustering with approximation factor 3 + ϵ.

Proof. We use the same notation as in Lemma 15. That is, let G(i) = (V (i), E(i)) denote
the graph G after removing the i-th cluster and let ui denote the i-th pivot node. By the
same reasoning as in Lemma 15, the total cost of the node-weighted clustering constructed
by the algorithm is exactly

t−1∑

i=0

∑

vw:
uivw∈T (G(i))

ωvωw.

In order to bound this cost, we again bound the cost of selecting the average node u as a
pivot—this time however, we weight the nodes proportional to their weights ωu:

∑

u∈V (i)

ωu ·
∑

vw:
uvw∈T (G(i))

ωvωw = 3 ·
∑

uvw∈T (G(i))

ωuωvωw

≤ 3 ·
∑

uvw∈T (G(i))

ωuxvw + ωvxwu + ωwxuv

= 3 ·
∑

u∈V (i)

ωu ·
∑

vw:
uvw∈T (G(i))

xvw.

In the second step, we applied the LP constraint. Using this inequality, we conclude that for
any pivot node the ratio in Line 4 is bounded by 3. Assuming that x is a (1 + ϵ

3)-approximate
solution to the LP in Figure 3, we obtain the following upper bound on the cost of the
node-weighted correlation clustering:

t−1∑

i=0

∑

vw
uivw∈T (G(i))

ωvωw ≤ 3 ·
t−1∑

i=0

∑

vw
uivw∈T (G(i))

xvw

≤ 3 ·
∑

vw∈V

xvw

≤ (3 + ϵ) ·OPT(LP)

≤ (3 + ϵ) ·OPT(NWCC) .

Here, in order to bound OPT(LP) ≤ OPT(NWCC) (the optimal cost of the node-weighted
correlation clustering), we argue that any node-weighted correlation clustering can be turned
into a feasible solution of the LP in Figure 3. Indeed, for any pair uv whose preference is
violated assign xuv = ωuωv and for any pair uv whose preference is respected assign xuv = 0.
Recalling that every bad triplet involves at least one pair whose preference was violated we
conclude that all constraints of the LP are satisfied. Thus x is a feasible solution and we
have that OPT(LP) ≤ OPT(NWCC). ◀

Proof of Theorem 4. We use Algorithm 5. The correctness follows from the previous
Lemma 27. To appropriately bound the running time, we use the same insight as in Section 4:
Since the LP in Figure 3 is a covering LP, we can use the combinatorial algorithm in
Theorem 13 to approximate the LP in Line 1 in time Õ(n3ϵ−3). This proves the first part of
the theorem.

For the second part we instead use an all-purpose LP solver to find an exact solution to
the LP in Line 1 in time O((n3)2.373) = O(n7.119) [21, 36, 5]. ◀

26 A Faster Algorithm for Constrained Correlation Clustering

Algorithm 6 The randomized PIVOT algorithm computing an expected 3-approximation
of Node-Weighted Correlation Clustering.

1 Initialize the weighted sampling data structure on V with weights {ωu }u∈V

2 C ← ∅
3 while V ̸= ∅ do
4 u← Sample()
5 Add a cluster containing u and all its neighbors to C

6 Remove u, its neighbors and all their incident edges from G

7 Run Remove(u) and Remove(v) for all neighbors v of u

8 return C

Randomized Algorithm. In this section we describe our optimal randomized PIVOT
algorithm for Node-Weighted Correlation Clustering (Theorem 5). As the decisive ingredient,
we provide a data structure to perform weighted sampling on a decremental set:

▶ Lemma 28 (Weighted Sampling). Let A be a set of initially n objects with associated
weights {ωa }a∈A. There is a data structure supporting the following operations on A:

Sample(): Samples and removes an element a ∈ A, where a ∈ A is selected with
probability ωa/

∑
a′∈A ωa′ .

Remove(a): Removes a from A.

The total time to initialize the data structure and to run the previous operations until A is
empty is bounded by O(n), with high probability 1− 1

nc , for any constant c > 0.

We postpone the proof of Lemma 28 for now and first analyze the randomized algorithm
in Algorithm 6. It can be seen as a natural generalization of the sampling algorithm from [3].

▶ Lemma 29 (Correctness of Algorithm 6). Algorithm 6 correctly approximates Node-Weighted
Correlation Clustering with expected approximation factor 3.

Proof. We borrow the notation from Lemma 27, writing G(i) = (V (i), E(i)) for the graph
after removing the i-th cluster and ui for the i-th pivot node. Assuming the correctness of the
sampling data structure (Lemma 28), ui is sampled from Vi with probability ωu/

∑
v∈V ωv.

Again, the total cost of the clustering computed by Algorithm 6 is exactly

t−1∑

i=0

∑

vw:
uivw∈T (G(i))

ωvωw.

Let x = {xuv }uv denote an optimal solution to the LP in Figure 3. (In contrast to the
deterministic algorithm, here we do not compute the solution.) To bound the inner sum in

N. Fischer, E. Kipouridis, J. Klausen, and M. Thorup 27

expectation, we use the same computation as in Lemma 27, relying on the LP constraint:

E
u∈V (i)

∑

vw:
uvw∈T (G(i))

ωvωw

 = 1∑

v∈V (i) ωv
·

∑

u∈V (i)

ωu ·
∑

vw:
uvw∈T (G(i))

ωvωw

= 3∑
v∈V (i) ωv

·
∑

uvw∈T (G(i))

ωuωvωw

≤ 3∑
v∈V (i) ωv

·
∑

uvw∈T (G(i))

ωuxvw + ωvxwu + ωwxuv

= 3 · E
u∈V (i)

∑

vw:
uvw∈T (G(i))

xvw

 .

It follows that the expected total cost is bounded by

E
u0,...,ut−1

t−1∑

i=0

∑

vw:
uivw∈T (G(i))

ωvωw

 ≤ 3 · E

u0,...,ut−1

t−1∑

i=0

∑

vw:
uivw∈T (G(i))

xvw

≤ 3 ·
∑

vw∈(V
2)

xvw

≤ 3 ·OPT(LP)

≤ 3 ·OPT(NWCC),

where we used the same arguments as in Lemma 27. In particular, we used that for any
choice of pivot nodes every pair vw appears in the sum at most once and we can therefore
drop the expectation. ◀

Proof of Theorem 5. By Lemma 29, Algorithm 6 correctly approximates Node-Weighted
Correlation Clustering within a factor 3, in expectation.

To bound the running time of the algorithm, first recall that by Lemma 28 the total
time to initialize and sample from the weighted sampling data structure is O(n) with high
probability 1− 1/ poly(n). The time to construct the clustering is O(n + m) as any edge in
the graph is touched exactly once. ◀

We remark that this randomized algorithm can in fact be seen as a reduction from
Node-Weighted Correlation Clustering to Constrained Correlation Clustering: For any
node u, construct a supernode containing ωu many new nodes (all of which are joined by
friendliness constraints). Then there is a one-to-one correspondence between node-weighted
and constrained correlation clusters of the same cost. The constructed instance’s size is
proportional to the sum of weights and can thus be much larger than the original instance’s
size; however we can use our weighted sampling data structure to efficiently sample from it
anyways.

Weighted Sampling. We finally provide a proof of Lemma 28. It heavily relies on Walker’s
Alias Method [41, 40], which we summarize in the following theorem:

28 A Faster Algorithm for Constrained Correlation Clustering

▶ Theorem 30 (Alias Method [41, 40]). Let A be a set of n objects with weights {ωa }a∈A.
In time O(n) we can preprocess A, and then sample a ∈ A with probability ωa/

∑
a′∈A ωa′ in

constant time.

We start with the description of our data structure. Throughout, we partition the objects
in A into buckets B1, . . . , Bℓ, such that the i-th bucket Bi contains objects with weights
in [2i−1, 2i). Assuming that each weight is bounded by poly(n), the number of buckets is
bounded by ℓ = O(log n). For every bucket i = 1, . . . , ℓ, we maintain an initial weight pi and
an actual weight qi. Initially, we set pi, qi ←

∑
s∈Bi

w(si). Moreover, using the Alias Method
we preprocess in O(log n) time the set of buckets {B1, . . . , Bℓ } with their associated initial
weights pi. Additionally, using the Alias Method we preprocess each individual bucket Bi

with associated weights {ωa }a∈Bi .
Next, we describe how to implement the supported operations:

Remove(a): Let a be contained in the i-th bucket Bi. We remove a from Bi, and update
the actual weight qi ← qi − ωa (but not the initial weight pi). If qi < pi/2, then we
recompute pi ←

∑
a∈Bi

ωa and we recompute the Alias Method both on Bi as well as on
the set of buckets (based on their initial weights pi).
Sample(): We sample a bucket i = 1, . . . , ℓ with probability proportional to its initial
weight pi using the Alias Method. With probability qi/pi we accept the bucket, otherwise
we reject and sample a new bucket.
Next, using the preprocessed Alias Method we sample an element a from Bi. If the
element is no longer contained in Bi (as it was removed in the meantime), we repeat and
sample a new element. As soon as an element a is found we report a and call Remove(a).

First, in Lemma 31 we argue for the correctness of the data structure. Then in Lemmas 32–34
we analyze the total running time.

▶ Lemma 31. Sample() correctly returns an element a with probability ωa/
∑

a′∈A ωa′ .

Proof. The statement is proven in two steps. First, we show that every bucket Bi is selected
with probability

∑
a∈Bi

ωa/
∑

a′∈A ωa′ . Indeed, it is easy to check that we invariantly have
qi =

∑
a∈Bi

ωa. Moreover, every bucket Bi is sampled with probability pi/
∑

a′∈A ωa′ by the
Alias Method. Since we accept every bucket with probability qi/pi (and resample otherwise),
the probability of accepting Bi is indeed

pi∑
a′∈A ωa′

· qi

pi
= qi∑

a′∈A ωa′
=

∑
a∈Bi

ωa∑
a′∈A ωa′

.

Second, assume that we accepted Bi and continue sampling a ∈ Bi. Since we resample
whenever a non-existing element is returned, each existing element a ∈ Bi is sampled with
probability exactly ωa/qi. By combining both steps, we obtain the claim. ◀

▶ Lemma 32. The preprocessing time is bounded by O(n).

Proof. The computation of pi and qi takes time O(n). Moreover, to initialize the Alias
Method on the buckets takes time O(log n), and to initialize the Alias Method on an
individual bucket Bi takes time O(|Bi|). Thus, the total preprocessing time is bounded
by O(n +

∑
i |Bi|) = O(n). ◀

▶ Lemma 33. The total time of all Remove(·) operations is bounded by O(n).

N. Fischer, E. Kipouridis, J. Klausen, and M. Thorup 29

Proof. For a given element a, we can find its bucket Bi and update the actual weight qi

of that bucket in constant time. Since there are at most n operations, this amounts to
time O(n). It remains to bound the time to reconstruct the Alias Method data structures.

We are left to argue about the total time of rebuilding. We only rebuild the structure of
a single bucket if its actual weight dropped in half since the last rebuilding. As the objects
in a bucket have weights that are within a factor 2, we have removed at least a fraction of 1

3
objects in the bucket since the last rebuilding. Thus, the total number of reconstructions of
a bucket Bi is O(log |Bi|) = O(log n) and the total time for these reconstructions is bounded
by

∑∞
k=0(2

3)k|Bi| = O(|Bi|). Summing over all buckets, the total reconstruction time is
bounded by O(n).

We also rebuild the Alias Method structure on the set of buckets each time a bucket is
rebuilt. Since there are only O(log n) buckets, each of which is rebuilt at most O(log n) times
with running time O(log n), the total time for this part is bounded by O(log3 n). ◀

▶ Lemma 34. The total time of all Sample() operations is bounded by O(n) with probabil-
ity 1− 1

nc , for any constant c > 0.

Proof. Consider a single execution of Sample(). Since at any point during the lifetime of
the data structure we have that qi > pi

2 , we accept the sampled bucket with probability at
least 1

2 . Moreover, by the same argument we find an existing element in that bucket with
probability 1

2 as well. The number of repetitions of both of these random experiments can be
modeled by a geometric random variable with constant expectation. Hence, using a standard
concentration bound for the sum of independent geometric random variables [31], the total
number repetitions across the at most n executions of Sample() is bounded by O(n) with
probability at most 1− 1

nc , for any constant c > 0. ◀

In combination, Lemmas 31–34 prove the correctness of Lemma 28.

Non-Integer Weights. Throughout we assumed that the weights are integers, but what if
the weights are instead rationals (or reals in an appropriate model of computation)? Our
deterministic algorithm uses the weights only in the solution of the LP and is therefore
unaffected by the change. We remark that our randomized algorithm can also be adapted to
3-approximate Node-Weighted Correlation Clustering with the same running time even if
rational weights were allowed by adapting the weighted sampling structure.

	Introduction
	Realistic Hashing
	Why Realistic Hashing, and How?
	k-independence
	Uniform Hashing
	Locally Uniform Hashing
	Feasibility of Implementation

	Tabulation-Based Hash Functions
	Locally Uniform Hashing with Tornado Tabulation
	Techniques for Showing Uniformity
	Application to Linear Probing

	Sampling-Based Estimation
	Showing Lower Tails for Tornado Tabulation

	What's Next?

	Online Sorting
	The Problems
	Previous Work
	Contributions
	Randomized Algorithms
	Stochastic Input

	Open Questions

	Constrained Correlation Clustering
	The Problems
	A Faster Approximation Algorithm
	Pivoting Algorithms
	Correctness of Pivoting
	A Lower Bound for Pivoting

	Node-Weighted Correlation Clustering
	Open Questions

	Bibliography
	Locally Uniform Hashing
	Hashing for Sampling-Based Estimation
	Online Sorting and Online TSP
	A Faster Algorithm for Constrained Correlation Clustering

